Skip to main content

Advertisement

Log in

Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: recent progress from a material and drug delivery

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cyclodextrins are a type of natural materials that can be used in the pharmaceutical industry. Cyclodextrins are safe, biodegradable, with the multifunctional property as they can encapsulate both hydrophilic and hydrophobic drugs. Additionally, they can overcome challenges associated with drug toxicity and enhancing the solubility of the insoluble drugs; thus, cyclodextrins are effective carriers in loading tiny molecules. Moreover, the synthesis of nanosponges (NPs) systems can enhance the drug encapsulation in cyclodextrin cavities to control the rate of drug released. Cyclodextrin can contain the drug molecules to form a clathrate; cyclodextrin-based NPs can maintain a high loading capacity of various small molecules for drug delivery. This review presents a general overview of the current research progress and the applications of cyclodextrin-based NPs for drug delivery in the past two decades.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

NPs:

Nanosponges

AGU:

Anhydrous α-D-glucopyranoside units

CD:

Cyclodextrin

HP-β-CDs:

Hydroxypropyl-β-cyclodextrins

Da:

Dalton

FT-IR:

Fourier transform infrared spectroscopy

SS-NMR:

Solid-state nuclear magnetic resonance spectrometer

DMSO:

Dimethylsulfoxide

DMF:

Dimethylformamide

TEL:

Telmisartan

HCl:

Hydrochloric

NaHCO3 :

Sodium bicarbonate

BPDMA:

Benzoporphyrin-derivative monoacid ring A

atRA:

All-trans retinoic acid

L-DOPA:

Levodopa

DSC:

Differential scanning calorimetry

XRD:

X-ray diffraction

CP:

Clobetasol propionate

References

  1. Osmani AM, Bhosale RR, Hani U, Vaghela R, Kulkarni RK (2015) Parthasarathi Cyclodextrin based nanosponges: impending carters in drug delivery and nanotherapeutics. Curr Drug Ther 10:3–19

    Article  CAS  Google Scholar 

  2. Ma Z, Wang N, He H, Tang X (2019) Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release 316:359–380

    Article  CAS  Google Scholar 

  3. Menezes PDP, Andrade TA, Frank LA, de Souza E, Trindade G, Trindade IAS, Serafini MR, Guterres SS, Araujo AAS (2019) Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 559:312–328

    Article  CAS  Google Scholar 

  4. Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L (2020) Antimicrobial-loaded nanocarriers for food packaging applications. Adv Colloid Interface Sci 278:102140

    Article  CAS  Google Scholar 

  5. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Pharm Sci 85:1017–1025

    Article  CAS  Google Scholar 

  6. Radi AE, Eissa S (2011) Electrochemical study of indapamide and its complexation with β-cyclodextrin. Incl Phenom Macrocycl Chem 71:95–102

    Article  CAS  Google Scholar 

  7. Bricout H, Hapiot F, Ponchel A, Tilloy S, Monflier E (2009) Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes. Sustainability 1:924–945

    Article  CAS  Google Scholar 

  8. Osmani RAM, Kulkarni PK, Gowda V, Hani U, Gupta VK, Prerana M, Saha C (2018) Cyclodextrin-based nanosponges in drug delivery and cancer therapeutics. In: Applications of nanocomposite materials in drug delivery, pp 97–147

  9. Girek T, Ciesielski W (2011) Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. Incl Phenom Macrocycl Chem 69:445–451

    Article  CAS  Google Scholar 

  10. Li DM (1999) Min Nanosponges: from inclusion chemistry to water purifying technology. ChemTech 29:31–37

    Google Scholar 

  11. Darandale S, Vavia P (2013) Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. Incl Phenom Macrocycl Chem 75:315–322

    Article  CAS  Google Scholar 

  12. Li D, Ma M (2000) Nanosponges for water purification. Clean Prod Process 2:112–116

    Article  Google Scholar 

  13. Bilensoy E, Hincal AA (2010) Cyclodextrin-based nanomaterials in pharmaceutical field. Pharm Sci Encycl Drug Discov Dev Manuf, pp 1–23

  14. Vyas A, Saraf S, Saraf S (2008) Cyclodextrin based novel drug delivery systems. J Inclus Phen Macrocycl Chem 62:23–42

    Article  CAS  Google Scholar 

  15. Duchêne D, Bochot A (2016) Thirty years with cyclodextrins. Int J Pharm 514:58–72

    Article  Google Scholar 

  16. Trotta F, Cavalli R (2009) Characterization and applications of new hyper-cross-linked cyclodextrins. Compos Interfaces 16:39–48

    Article  CAS  Google Scholar 

  17. Celebioglu A, Umu OC, Tekinay T, Uyar T (2014) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B Biointerfaces 116:612–619

    Article  CAS  Google Scholar 

  18. Kaur P, Rampal A, Singh M, Bedi P, Bedi N (2015) Ternary inclusion complexes of rifaximin with β-cyclodextrin and sodium deoxycholate for solubility enhancement. Curr Drug Discov Technol 12:179–189

    Article  CAS  Google Scholar 

  19. Liu S, Chen X, Zhang Q, Wu W, Xin J, Li J (2014) Multifunctional hydrogels based on beta-cyclodextrin with both biomineralization and anti-inflammatory properties. Carbohydr Polym 102:869–876

    Article  CAS  Google Scholar 

  20. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, Manfredi A, Marinotto D, Vavia PR (2010) In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. Incl Phenom Macrocycl Chem 68:183–191

    Article  CAS  Google Scholar 

  21. Challa R, Ahuja A, Ali J, Khar R (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6:E329–E357

    Article  Google Scholar 

  22. Cavalli R, Peira E, Caputo O, Gasco MR (1999) Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β-cyclodextrins. Int J Pharm 182:59–69

    Article  CAS  Google Scholar 

  23. Pariot N, Edwards-Lévy F, Andry M-C, Lévy M-C (2002) Cross-linked β-cyclodextrin microcapsules II Retarding effect on drug release through semi-permeable membranes. Int J Pharm 232:175–181

    Article  CAS  Google Scholar 

  24. Hammoud Z, Khreich N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76

    Article  CAS  Google Scholar 

  25. Trotta F, Zanetti M, Cavalli R (2012) Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 8:2091–2099

    Article  CAS  Google Scholar 

  26. Selvamuthukumar S, Anandam S, Krishnamoorthy K, Rajappan M (2012) Nanosponges: a novel class of drug delivery system-review. Pharm Pharm Sci 15:103–111

    Article  Google Scholar 

  27. Osmani AM, Hani U, Bhosale R, Kulkarni P, Shanmuganathan S (2017) Nanosponge carriers-an archetype swing in cancer therapy: a comprehensive review. Curr Drug Targets 18:108–118

    Article  Google Scholar 

  28. Bachkar BA, Gadhe LT, Battase P, Mahajan N, Wagh R, Talele S (2015) Nanosponges: a potential nanocarrier for targeted drug delivery. World J Pharm Res 4:751–768

    CAS  Google Scholar 

  29. Bailly C (2020) Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur J Pharmacol 871:172945

    Article  CAS  Google Scholar 

  30. Rezaei A, Fathi M, Jafari SM (2019) Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–162

    Article  CAS  Google Scholar 

  31. Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, Hage DS (2020) Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: a review. J Pharm Biomed Anal 177:112882

    Article  CAS  Google Scholar 

  32. Alongi J, Poskovic M, Frache A, Trotta FJCP (2011) Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohyd Polym 86:127–135

    Article  CAS  Google Scholar 

  33. Sharma R, Walker RB, Pathak K (2011) Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Educ Res 45:25–31

    Google Scholar 

  34. Cai H, Huang Y-L, Li D (2019) Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord Chem Rev 378:207–221

    Article  CAS  Google Scholar 

  35. Modi A, Tayade P (2007) A comparative solubility enhancement profile of valdecoxib with different solubilization approaches. Indian J Pharm Sci 69:274

    Article  CAS  Google Scholar 

  36. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, Trotta M, Zara G, Cavalli R (2010) Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 74:193–201

    Article  CAS  Google Scholar 

  37. Mele A, Castiglione F, Malpezzi L, Ganazzoli F, Raffaini G, Trotta F, Rossi B, Fontana A, Giunchi G (2011) HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. Incl Phenom Macrocycl Chem 69:403–409

    Article  CAS  Google Scholar 

  38. Layre A-M, Gref R, Richard J, Requier D, Chacun H, Appel M, Domb AJ, Couvreur P (2005) Nanoencapsulation of a crystalline drug. Int J Pharm 298:323–327

    Article  CAS  Google Scholar 

  39. Gentili A (2020) Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 1609:460654

    Article  CAS  Google Scholar 

  40. Semalty M, Panchpuri M, Singh D, Semalty A (2014) Cyclodextrin inclusion complex of racecadotril: effect of drug-β-cyclodextrin ratio and the method of complexation. Curr Drug Discov Technol 11:154–161

    Article  CAS  Google Scholar 

  41. Guineo-Alvarado J, Quilaqueo M, Hermosilla J, Gonzalez S, Medina C, Rolleri A, Lim LT, Rubilar M (2020) Degree of crosslinking in beta-cyclodextrin-based nanosponges and their effect on piperine encapsulation. Food Chem 340:128132

    Article  Google Scholar 

  42. Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-beta-cyclodextrin polymer. Colloids Surf B Biointerfaces 114:130–137

    Article  CAS  Google Scholar 

  43. Tripodo G, Wischke C, Neffe AT, Lendlein A (2013) Efficient synthesis of pure monotosylated beta-cyclodextrin and its dimers. Carbohyd Res 381:59–63

    Article  CAS  Google Scholar 

  44. Tungala K, Adhikary P, Krishnamoorthi S (2013) Trimerization of β-cyclodextrin through the click reaction. Carbohyd Polym 95:295–298

    Article  CAS  Google Scholar 

  45. Berto S, Bruzzoniti MC, Cavalli R, Perrachon D, Prenesti E, Sarzanini C, Trotta F, Tumiatti W (2007) Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. Incl Phenom Macrocycl Chem 57:631–636

    Article  CAS  Google Scholar 

  46. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P (2010) Nanosponge formulations as oxygen delivery systems. Int J Pharm 402:254–257

    Article  CAS  Google Scholar 

  47. Gelderblom* H, Verweij J, Nooter K, Sparreboom A, Cremophor EL (2001) The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    CAS  Google Scholar 

  48. Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, Vavia P, Trotta F, Cavalli R (2013) Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 443:262–272

    Article  CAS  Google Scholar 

  49. Lundberg BB (2011) Preparation and characterization of polymeric pH-sensitive STEALTH(R) nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Int J Pharm 408:208–212

    Article  CAS  Google Scholar 

  50. Malingré MM, Beijnen JH, Schellens JH (2001) Oral delivery of taxanes. Invest New Drugs 19:155–162

    Article  Google Scholar 

  51. Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V (2011) The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol Technol 59:200–205

    Article  CAS  Google Scholar 

  52. Swaminathan S, Vavia PR, Trotta F, Cavalli R (2013) Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. Biomed Nanotechnol 9:998–1007

    Article  CAS  Google Scholar 

  53. Osmani RAM, Kulkarni PK, Shanmuganathan S, Hani U, Srivastava A, Prerana M, Shinde CG, Bhosale RR (2016) A 3 2 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Adv 6:18737–18750

    Article  CAS  Google Scholar 

  54. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, Irache J (2009) Combined hydroxypropyl-β-cyclodextrin and poly (anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413

    Article  Google Scholar 

  55. Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601

    Article  CAS  Google Scholar 

  56. Moreira MP, Andrade GRS, de Araujo MVG, Kubota T, Gimenez I (2016) Ternary cyclodextrin polyurethanes containing phosphate groups: synthesis and complexation of ciprofloxacin. Carbohyd Polym 151:557–564

    Article  CAS  Google Scholar 

  57. Shende P, Kulkarni YA, Gaud RS, Deshmukh K, Cavalli R, Trotta F, Caldera F (2015) Acute and repeated dose toxicity studies of different beta-cyclodextrin-based nanosponge formulations. J Pharm Sci 104:1856–1863

    Article  CAS  Google Scholar 

  58. Yao X, Huang P, Nie Z (2019) Cyclodextrin-based polymer materials: from controlled synthesis to applications. Prog Polym Sci 93:1–35

    Article  CAS  Google Scholar 

  59. Ansari KA, Vavia PR, Trotta F, Cavalli R (2011) Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12:279–286

    Article  CAS  Google Scholar 

  60. Hamada H, Ishihara K, Masuoka N, Mikuni K, Nakajima N (2006) Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins. Biosci Bioeng 102:369–371

    Article  CAS  Google Scholar 

  61. Mognetti B, Barberis A, Marino S, Berta G, De Francia S, Trotta F, Cavalli R (2012) In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. Incl Phenom Macrocycl Chem 74:201–210

    Article  CAS  Google Scholar 

  62. Park K (2010) Efficient oral delivery of paclitaxel using cyclodextrin complexes. Controll Release 145:1

    Article  CAS  Google Scholar 

  63. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R (2010) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 17:419–425

    Article  CAS  Google Scholar 

  64. Seglie L, Devecchi M, Trotta F, Scariot V (2013) β-Cyclodextrin-based nanosponges improve 1-MCP efficacy in extending the postharvest quality of cut flowers. Sci Hortic 159:162–165

    Article  CAS  Google Scholar 

  65. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R (2013) Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm Dev Technol 18:619–625

    Article  CAS  Google Scholar 

  66. Tejashri G, Amrita B, Darshana J (2013) Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharm 63:335–358

    Article  CAS  Google Scholar 

  67. Singireddy A, Pedireddi SR, Nimmagadda S, Subramanian S (2016) Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc 3:3951–3959

    Article  Google Scholar 

  68. Mamba B, Krause R, Malefetse T, Gericke G, Sithole S (2008) Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 34:657–660

    Article  CAS  Google Scholar 

  69. Mamba B, Krause R, Malefetse T, Mhlanga S, Sithole S, Salipira K, Nxumalo E (2007) Removal of geosmin and 2-methylisorboneol (2-MIB) in water from Zuikerbosch Treatment Plant (Rand Water) using â-cyclodextrin polyurethanes. Water SA 33

  70. Tang S, Kong L, Ou J, Liu Y, Li X, Zou H (2006) Application of cross-linked beta-cyclodextrin polymer for adsorption of aromatic amino acids. J Mol Recogn 19:39–48

    Article  CAS  Google Scholar 

  71. Cavalli R, Trotta F, Tumiatti W (2006) Cyclodextrin-based nanosponges for drug delivery. Incl Phen Macrocycl Chem 56:209–213

    Article  CAS  Google Scholar 

  72. Pawar S, Shende P, Trotta F (2019) Diversity of beta-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 565:333–350

    Article  CAS  Google Scholar 

  73. Nadar SS, Vaidya L, Maurya S, Rathod VK (2019) Polysaccharide based metal organic frameworks (polysaccharide–MOF): a review. Coord Chem Rev 396:1–21

    Article  CAS  Google Scholar 

  74. Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B (2019) Cyclodextrin-based delivery systems for cancer treatment. Mater Sci Eng C Mater Biol Appl 96:872–886

    Article  CAS  Google Scholar 

  75. Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE (2019) A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 54

  76. Cecone C, Zanetti M, Anceschi A, Caldera F, Trotta F, Bracco P (2019) Microfibers of microporous carbon obtained from the pyrolysis of electrospun β-cyclodextrin/pyromellitic dianhydride nanosponges. Polym Degrad Stab 161:277–282

    Article  CAS  Google Scholar 

  77. Omar SM, Ibrahim F, Ismail A (2020) Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J 28:349–361

    Article  CAS  Google Scholar 

  78. Shende PK, Trotta F, Gaud R, Deshmukh K, Cavalli R, Biasizzo M (2012) Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. Incl Phenom Macrocycl Chem 74:447–454

    Article  CAS  Google Scholar 

  79. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F (2013) In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. Incl Phenom Macrocycl Chem 77:135–145

    Article  CAS  Google Scholar 

  80. Muankaew C, Jansook P, Sigurđsson HH, Loftsson T (2016) Cyclodextrin-based telmisartan ophthalmic suspension: formulation development for water-insoluble drugs. Int J Pharm 507:21–31

    Article  CAS  Google Scholar 

  81. Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RC, Windbergs M (2015) Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 78:204–213

    Article  CAS  Google Scholar 

  82. Chauhan AS (2015) Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann NY Acad Sci 1348:134–140

    Article  CAS  Google Scholar 

  83. Pushpalatha R, Selvamuthukumar S, Kilimozhi D (2019) Cyclodextrin nanosponge based hydrogel for the transdermal co-delivery of curcumin and resveratrol: development, optimization, in vitro and ex vivo evaluation. Drug Deliv Sci Tech 52:55–64

    Article  CAS  Google Scholar 

  84. Ansari R, Maheshwari R, Mahajan S, Jain V (2014) Development and characterization of hydrogel system bearing minoxidil loaded β–cyclodextrin based nanosponges for topical delivery. Drug Deliv Lett 4:148–155

    Article  CAS  Google Scholar 

  85. Conte C, Caldera F, Catanzano O, D’Angelo I, Ungaro F, Miro A, Pellosi DS, Trotta F, Quaglia F (2014) β-Cyclodextrin nanosponges as multifunctional ingredient in water-containing semisolid formulations for skin delivery. Pharm Sci 103:3941–3949

    Article  CAS  Google Scholar 

  86. Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, Harth E (2015) Nanosponge-mediated drug delivery lowers intraocular pressure. TVST 4:1

    Article  Google Scholar 

  87. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16

    Article  CAS  Google Scholar 

  88. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Controll Release 152:2–12

    Article  CAS  Google Scholar 

  89. Ejaz M, Yu H, Yan Y, Blake DA, Ayyala RS, Grayson SM (2011) Evaluation of redox-responsive disulfide cross-linked poly (hydroxyethyl methacrylate) hydrogels. Polymer 52:5262–5270

    Article  CAS  Google Scholar 

  90. Daga M, de Graaf IAM, Argenziano M, Barranco ASM, Loeck M, Al-Adwi Y, Cucci MA, Caldera F, Trotta F, Barrera G, et al (2020) Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol In Vitro 65

  91. Trotta F, Caldera F, Dianzani C, Argenziano M, Barrera G, Cavalli R (2015) New glutathione bio-responsive cyclodextrin nanosponges. ChemPlusChem 81:439–443

    Article  Google Scholar 

  92. Matencio A, Dhakar NK, Bessone F, Musso G, Cavalli R, Dianzani C, Garcia-Carmona F, Lopez-Nicolas JM, Trotta F (2020) Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydr Polym 231:115763

    Article  CAS  Google Scholar 

  93. Silva F, Caldera F, Trotta F, Nerín C, Domingues FC (2019) Encapsulation of coriander essential oil in cyclodextrin nanosponges: a new strategy to promote its use in controlled-release active packaging. Innov Food Sci Emerg Technol 56

  94. Cooper CA, Chahine LM (2016) Biomarkers in prodromal Parkinson disease: a qualitative review. Int Neuropsychol Soc 22:956–967

    Article  Google Scholar 

  95. Davis AA, Racette B (2016) Parkinson disease and cognitive impairment: five new things. Neurol Clin Pract 6:452–458

    Article  Google Scholar 

  96. Eslami M, Zare HR, Namazian M (2012) Thermodynamic parameters of electrochemical oxidation of L-DOPA: experimental and theoretical studies. Phys Chem B 116:12552–12557

    Article  CAS  Google Scholar 

  97. Puiu M, Babaligea I, Olmazu C, Răducan A, Oancea D (2010) Peroxidase-mediated oxidation of L-DOPA: a kinetic approach. Biochem Eng J 52:248–254

    Article  CAS  Google Scholar 

  98. Trotta F, Caldera F, Cavalli R, Soster M, Riedo C, Biasizzo M, Uccello Barretta G, Balzano F, Brunella V (2016) Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease. Expert Opin Drug Deliv 13:1671–1680

    Article  CAS  Google Scholar 

  99. Rossi B, Fontana A, Giarola M, Mariotto G, Mele A, Punta C, Melone L, Toraldo F, Trotta F (2014) Glass-like dynamics of new cross-linked polymeric systems: behavior of the Boson peak. Non-crystalline Solids 401:73–77

    Article  CAS  Google Scholar 

  100. Sapino S, Carlotti ME, Cavalli R, Ugazio E, Berlier G, Gastaldi L, Morel S (2012) Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. Incl Phenom Macrocycl Chem 75:69–76

    Article  Google Scholar 

  101. Ramírez-Ambrosi M, Caldera F, Trotta F, Berrueta LÁ, Gallo B (2014) Encapsulation of apple polyphenols in β-CD nanosponges. Incl Phenom Macrocycl Chem 80:85–92

    Article  Google Scholar 

  102. Sadjadi S, Malmir M, Heravi MM, Raja M (2019) Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: efficient catalytic support for immobilization of Pd nanoparticles. Int J Biol Macromol 128:638–647

    Article  CAS  Google Scholar 

  103. Sadjadi S, Heravi MM, Raja M (2019) Composite of ionic liquid decorated cyclodextrin nanosponge, graphene oxide and chitosan: a novel catalyst support. Int J Biol Macromol 122:228–237

    Article  CAS  Google Scholar 

  104. Khajeh Dangolani S, Sharifat S, Panahi F, Khalafi-Nezhad A (2019) Immobilized palladium nanoparticles on a cyclodextrin-polyurethane nanosponge (Pd-CD-PU-NS): an efficient catalyst for cyanation reaction in aqueous media. Inorg Chim Acta 494:256–265

    Article  CAS  Google Scholar 

  105. Simionato I, Domingues FC, Nerin C, Silva F (2019) Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem Toxicol 132:110647

    Article  CAS  Google Scholar 

  106. Rao MR, Bhingole RC (2015) Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev Ind Pharm 41:2029–2036

    Article  CAS  Google Scholar 

  107. Kumar S, Prasad M, Rao R (2021) Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater Sci Eng C 119

  108. Pawar S, Shende P (2020) Dual drug delivery of cyclodextrin cross-linked artemether and lumefantrine nanosponges for synergistic action using 23 full factorial designs. Colloids Surf A Physicochem Eng Aspects 602

  109. Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M (2019) Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to beta-cyclodextrin. Carbohydr Polym 213:70–78

    Article  CAS  Google Scholar 

  110. Vyas A, Sharma A (2012) Development and characterization of cyclodextrin nanosponges: a novel drug delivery system for delivery of poorly soluble drugs. Bull Pharm Res 1

  111. He H, Chen S, Zhou J, Dou Y, Song L, Che L, Zhou X, Chen X, Jia Y, Zhang J (2013) Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 34:5344–5358

    Article  CAS  Google Scholar 

  112. Surapaneni MS, Das SK, Das NG (2012) Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacology 2012

  113. Dhakar NK, Caldera F, Bessone F, Cecone C, Pedrazzo AR, Cavalli R, Dianzani C, Trotta F (2019) Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohyd Polym 224:115168

    Article  CAS  Google Scholar 

  114. Swaminathan S, Vavia PR, Trotta F, Torne S (2007) Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 57:89–94

    Article  CAS  Google Scholar 

  115. Khalid Q, Ahmad M, Minhas MU, Batool F, Malik NS, Rehman M (2020) Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: characterization and acute oral toxicity studies. J Drug Deliv Sci Technol

Download references

Acknowledgements

This study was funded by the National Key R&D Program of China (2018YFE0110200), the Natural Science Foundation of Hunan Province of China (2020JJ4278, 2020JJ5127, and 2018JJ4061), the key program of Hunan Provincial Department of science and technology (2020WK2020 and 2019NK2111), Program for Science & Technology Innovation Platform/Talents of Hunan Province (2019TP1029), the Scientific Research Fund of Hunan Provincial Education Department (18B290), and Zhuzhou Key Science & Technology Program of Hunan Province (2017, 2018, and 2019).

Author information

Authors and Affiliations

Authors

Contributions

JD, QJC, and WL conceived the paper; QJC, ZZ, JXF, QLL, QMD, XXZ, LM, JLR, FJL, HQY, and XMZ wrote the first draft; all the authors contributed substantially to the final text, tables, figure, and references to the paper.

Corresponding author

Correspondence to Wen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Chen, Q.J., Li, W. et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: recent progress from a material and drug delivery. J Mater Sci 56, 5995–6015 (2021). https://doi.org/10.1007/s10853-020-05646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05646-8

Navigation