Skip to main content
Log in

Electrochemical study of indapamide and its complexation with β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical oxidation of indapamide has been investigated at glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). Indapamide exhibited two well resolved signals which attributed to the oxidation of indoline ring and benzamide moiety in phosphate buffers in the pH range of 2.7–10.1. The oxidation processes have been shown to be irreversible and diffusion controlled. The formation of an inclusion complex of indapamide with β-cyclodextrin (β-CD) has been investigated by cyclic, differential pulse voltammetry as well as UV–Vis spectrophotometry. The stability constant of the complex was determined to be 6199 and 2717 M−1 using differential pulse voltammetry and UV–Vis spectrophotometry, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thomas, J.R.: A review of 10 years of experience with indapamide as an anti hypertensive agent. Hypertension 7, 152–156 (1985)

    Google Scholar 

  2. Tamura, A., Sato, T., Fum, T.: Antioxidant activity of indapamide and its metabolite. Chem. Pharm. Bull. 38, 255–257 (1990)

    CAS  Google Scholar 

  3. Uehara, Y., Shirahase, H., Nagata, T., Ishimitsu, T., Morishita, S., Osumi, S., Matsuoka, H., Sugimoto, T.: Radical scavengers of indapamide in prostacyclin synthesis in rat smooth muscle cell. Hypertension 15, 216–224 (1990)

    CAS  Google Scholar 

  4. Breugnot, C., Iliou, J., Privat, S., Robin, F., Lenaers, A.: In vitro an ex vitro inhibition of the modification of low-density lipoprotein by indapamide. J. Cardiovasc. Pharmacol. 20, 340–347 (1992)

    Article  CAS  Google Scholar 

  5. Bataillard, A., Schiavi, P., Sassard, J.: Pharmacological properties of indapamide. Rationale for use in hypertension. Clin. Pharmacokinet. 37, 7–12 (1999)

    Article  CAS  Google Scholar 

  6. Ganado, P., Ruiz, E., Rio, M.D., Larcher, F., Sanz, M., Steinert, J.R., Tejerina, T.: Growth inhibitory activity of indapamide on vascular smooth muscle cells. Eur. J. Pharmacol. 428, 19–27 (2001)

    Article  CAS  Google Scholar 

  7. Szejtli, J.: Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest (1982)

    Google Scholar 

  8. Inoue, Y., Hakushi, T., Liu, Y., Tong, L.H., Shen, B.J., Jin, D.S.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy-entropy compensation. J. Am. Chem. Soc. 115, 475–481 (1993)

    Article  CAS  Google Scholar 

  9. Manning, M.C., Patel, K., Borchardt, R.T.: Stability of protein pharmaceuticals. Pharm. Res. 6, 903–918 (1989)

    Article  CAS  Google Scholar 

  10. Saenger, W.: Structural aspects of cyclodextrins and their inclusion complexes. In: Atwood, J.L., Davies, J.E.D, MacNicol, D.D. (eds.), vol. 2, pp. 231–259. Academic Press, London (1984)

  11. Funasaki, N., Ishikawa, S., Neya, S.: Advances in physical chemistry and pharmaceutical applications of cyclodextrins. Pure Appl. Chem. 80, 1511–1524 (2008)

    Article  CAS  Google Scholar 

  12. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  13. Singh, I., Aboul-Enein, H.Y.: Pharmaceutical applications of cyclodextrins. FABAD J. Pharm. Sci. 30, 214–221 (2005)

    CAS  Google Scholar 

  14. Uekama, K.: Recent aspects of pharmaceutical application of cyclodextrins. J. Inclusion Phenom. 44, 3–7 (2002)

    Article  CAS  Google Scholar 

  15. Uekama, K.: Pharmaceutical application of cyclodextrins as multi-functional drug carriers. Yakugaku Zasshi 124, 909–935 (2004)

    Article  CAS  Google Scholar 

  16. Özdemir, N., Ordu, Ş.: Improvement of dissolution properties of furosemide by complexation with β-cyclodextrin. Drug Dev. Ind. Pharm. 24, 19–25 (1998)

    Article  Google Scholar 

  17. Ammar, H.O., Ghorab, M., Emara, L.H., El-Nahhas, S.A., Makram, T.S.: Inclusion complexation of furosemide in cyclodextrins: part 2: implication on bioavailability. Pharmazie 54, 207–210 (1999)

    CAS  Google Scholar 

  18. Şoica, C., Gyeresi, A., Dehelean, C., Peev, C., Aigner, Z., Kata, M.: Thin-layer chromatography as analytical method for inclusion complexes of some diuretics with cyclodextrins. Farmacia 56, 75–82 (2008)

    Google Scholar 

  19. Brittain, H.G.: Analytical profiles of drug substances and excipients. vol. 23, p. 254, Academic Press, San Diego (1994)

  20. Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. Wiley, New York (2001)

    Google Scholar 

  21. Harrison, J.A., Khan, Z.A.: The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem. 28, 131–138 (1970)

    Article  CAS  Google Scholar 

  22. Bird, C.W., Cheeseman, G.W.H.: Comprehensive heterocyclic chemistry. The structure, reactions, synthesis and uses of heterocyclic compounds. Pergamon Press, Oxford (1984)

    Google Scholar 

  23. Legorburu, M.J., Alonso, R.M., Jiménez, R.M.: Electrochemical oxidation of the diuretic indapamide. Electroanalysis 8, 280–284 (1996)

    Article  Google Scholar 

  24. Wang, J.: Analytical electrochemistry. Wiley, New York (2000)

    Book  Google Scholar 

  25. Rutsaert, R., Fernandes, M.: New drugs annual: cardiovascular drugs. In: Scriabine, A. (ed.) Raven Press, New York (1983)

  26. Backensfeld, T., ller, B.W.M., Kolter, K.: Interaction of NSA with cyclodextrins and hydroxypropyl cyclodextrin derivatives. Int. J. Pharm. 74, 85–93 (1991)

    Article  CAS  Google Scholar 

  27. Connors, K.A., Rosanske, T.W.: Trans-Cinnamic acid-acyclodextrin system as studied by solubility, spectral, and potentiometric techniques. J. Pharm. Sci. 69, 173–179 (1980)

    Article  CAS  Google Scholar 

  28. Krishnamoorthy, R., Mitra, A.K.: Complexation of weak acids and bases with cyclodextrins: effects of substrate ionization on the estimation and interpretation of association constants. Int. J. Pharm. Advances 1, 329–343 (1996)

    CAS  Google Scholar 

  29. Dang, X.J., Tong, J., Li, H.L.: The electrochemistry of the inclusion complex of anthraquinone with β-cyclodextrin studied by means of OSWV. J. Inclus. Phenom. Mol. 24, 275–286 (1996)

    Article  CAS  Google Scholar 

  30. Dang, X.-J., Nie, M.-Y., Tong, J., Li, H.-L.: Inclusion of the parent molecules of some drugs with β-cyclodextrin studied by electrochemical and spectrometric methods. J. Electroanal. Chem. 448, 61–67 (1998)

    Article  CAS  Google Scholar 

  31. Kelly, J.M., Lyons, W.J.M.: Electrochemistry, sensors and analysis. In: Smyth, M.R., Vos, J.G. (eds.) p. 205, Elsevier, Amsterdam (1986)

  32. Carter, M.T., Rodriguez, A.J., Bard, A.G.: Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1, 10-phenanthroline and 2, 2’-bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989)

    Article  CAS  Google Scholar 

  33. Feng, Q., Li, N., Jiang, Y.: Electrochemical studies of porphyrin interacting with DNA and determination of DNA. Anal. Chim. Acta 344, 97–104 (1997)

    Article  CAS  Google Scholar 

  34. Zhao, G.C., Zhu, J.J., Zhang, J.J., Chen, H.Y.: Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal. Chim. Acta 394, 337–344 (1999)

    Article  CAS  Google Scholar 

  35. Ibrahim, M.S., Shehatta, I.S., Al-Nayeli, A.A.: Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J. Pharm. Biomed. Anal. 28, 217–225 (2002)

    Article  CAS  Google Scholar 

  36. Radi, A.-E., Eissa, S.: Voltammetric and spectrophotometric study on the complexation of glibenclamide with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 68(3–4), 417–421 (2010)

    Article  CAS  Google Scholar 

  37. Yanez, C., Nunez-Vergara, L.J., Squella, J.A.: Differential pulse polarographic and UV–Vis spectrophotometric study of inclusion complexes formed by 1, 4-dihydropyridine calcium antagonists, nifedipine and nicardipine with β-cyclodextrin. Electroanalysis 15, 1771–1777 (2003)

    Article  CAS  Google Scholar 

  38. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  39. Nie, M.Y., Wang, Y., Li, H.L.: Electrochemical and spectral properties of phenylhydrazine in the presence of β-cyclodextrin. Pol. J. Chem. 71, 816–822 (1997)

    CAS  Google Scholar 

  40. Junquera, E., Pena, L., Aicart, E.: A conductimetric study of the interaction of P-cyclodextrin or hydroxypropyl-β-cyclodextrin with dodecyltrimethylammonium bromide in water solution. Langmuir 11, 4685–4690 (1995)

    Article  CAS  Google Scholar 

  41. Junquera, E., Pena, L., Aicart, E.: Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide. A characterization study in the presence and absence of hydroxypropyl-β-cyclodextrin. Langmuir 13, 219–224 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd-Elgawad Radi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radi, AE., Eissa, S. Electrochemical study of indapamide and its complexation with β-cyclodextrin. J Incl Phenom Macrocycl Chem 71, 95–102 (2011). https://doi.org/10.1007/s10847-010-9906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9906-1

Keywords

Navigation