Skip to main content
Log in

Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this study, a new aqueous insoluble ionic β-cyclodextrin polymer (PYR), synthesized by reaction of β-cyclodextrin with pyromellitic anhydride [1], is characterized by IR spectroscopy, showing typical cyclodextrin and carboxylic absorptions. pH-metric titrations of the acidic functions with standard NaOH solutions followed by a refinement of protonation constants, with specific software for equilibrium in solution, have been performed. Through this approach, the pK a values of the functional groups have been calculated. The complexation capabilities of PYR towards metal ions [Al(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV), Tl(I), and U(IV)] have been evaluated in aqueous solution (pH 3–5). The retention is mainly pH dependent and higher than 70% for Al(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II) and U(IV). For Tl(I) and Pt(IV) the retention is about 60% and 40% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trotta, F., Tumiatti, W., Vallero, R.: Italian patent N. MI2004A000614

  2. Larsen, K.L.: Large cyclodextrins. J. Inclusion. Phenom. Mol. Recognit. Chem. 43, 1–13 (2002)

    Article  CAS  Google Scholar 

  3. Bender, M.L., Komiyama M.: Cyclodextrin Chemistry, Springer-Verlag, Berlin Heidelberg New York (1978) pp. 2–8

    Google Scholar 

  4. Martin Del Valle, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  5. Juvancz, Z., Szejtli J.: The role of cyclodextrins in chiral selective chromatography. TrAC, Trends Anal. Chem. 21–5, 379–388 (2002)

    Article  CAS  Google Scholar 

  6. Liu, Y., Chang, X., Hu, X., Guo, Y., Meng, S., Wang, F.: Highly selective determination of total mercury(II) sub microgram per liter by β-cyclodextrin polymer solid-phase spectrophotometry using 1,3-di-(4-nitrodiazoamino)-benzene. Anal. Chim. Acta 532, 121–128 (2002)

    Article  Google Scholar 

  7. Bhaskar, M., Aruna, P., Ganesh, J., Rama, J., Radhakrishnan, G.: β-Cyclodextrin-polyurethane polymer as solid phase extraction material for the analysis of carcinogenic aromatic amines. Anal. Chim. Acta 509, 39–45 (2004)

    Article  CAS  Google Scholar 

  8. Asanuma, H., Hishiya, T., Komiyama, M.: Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers. J. Incl. Phenom. Macrocycl. Chem. 50, 51–55 (2004)

    CAS  Google Scholar 

  9. He, H.-B., Zhang, W.-N., Da, S.-L., Feng, Y.-Q.: Preparation and characterization of a magnesia–zirconia stationary phase modified with β-cyclodextrin for reversed-phase high-performance liquid chromatography. Anal. Chim. Acta 513, 481–492 (2004)

    Article  CAS  Google Scholar 

  10. Reece, D.A., Ralph, S.F., Wallace, G.G.: Metal transport studies on inherently conducting polymer membranes containing cyclodextrin dopants. J. Membr. Sci. 249, 9–20 (2005)

    Article  CAS  Google Scholar 

  11. De Stefano, C., Mineo, P., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. XVII. The calculation of equilibrium concentrations and formation constants. Ann. Chim. (Rome) 83, 243–277 (1993)

    Google Scholar 

  12. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: an improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987)

    Google Scholar 

  13. Soldatov, V.S.: A simple method for the determination of the acidity parameters of ion exchangers. Reac. Func. Polymers 46, 55–58 (2000)

    Article  CAS  Google Scholar 

  14. Soldatov, V.S., Sosinovich, Z.I., Mironova, T.V.: Acid–base properties of ion exchangers. II. Determination of the acidity parameters of ion exchangers with arbitrary functionality. Reac. Func. Polymers 58, 13–26 (2004)

    Article  CAS  Google Scholar 

  15. Zelano, V., Daniele, P.G., Berto, S., Ginepro, M., Laurenti, E., Prenesti, E.: Metals ions distribution between water and river sediment: speciation model and spectroscopic validation. Ann. Chim. (Rome) 96, 1–11 (2006)

    Article  CAS  Google Scholar 

  16. Smith, R.M., Martell, A.E., Motekaitis, R.J.: NIST Critical Selected Stability Constant of Metal Complexes Databases, version 6.0 (2002)

  17. Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. Alkali metal complexes of ethylenediaminetetraacetate nitrilotriacetate, diphosphate, and tripolyphosphate in aqueous solution. Anal. Chem. 57, 2956–2960 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial contribution (PRIN 2004) from MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca), Italy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Bruzzoniti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berto, S., Bruzzoniti, M.C., Cavalli, R. et al. Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. J Incl Phenom Macrocycl Chem 57, 631–636 (2007). https://doi.org/10.1007/s10847-006-9273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9273-0

Keywords

Navigation