Skip to main content
Log in

Biodegradable biopolymer–graphene nanocomposites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene’s invention has catalyzed many new material applications in different fields. It has been used in combination with different biopolymers to design nanocomposites with improved mechanical, thermal, electrical, as well as, gas-, and water vapor-barrier properties. This review focuses on the chemistry and synthesis of graphene oxide (GO) and sheds some light on the different ecological pathways available for graphene oxide synthesis and reduction. The major pathways for graphene incorporation into biopolymers include (1) solution intercalation, (2) melt intercalation, and (3) in situ polymerization. The fabrication, application, and mechanisms of bonding between biodegradable biopolymers, like poly (lactic acid), cellulose, starch, chitosan, alginates, polyamides, and other biodegradable materials, with different forms of graphene including graphene oxide (GO), reduced graphene oxide (RGO), graphene nanoplatelets (GNP), etc., are the focus of this review. The paper has been organized according to different methods of incorporating graphene derivatives into biopolymers, in order to highlight the mechanisms for chemical bonding-physical changes that biopolymers and graphene nanofillers undergo during the method of preparation and the impact of chemical changes on end use properties. The information has been assembled, so that new conclusions can be drawn from the available data. The mechanism of enhancement of functional properties is evaluated using techniques including fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the synergy resulting from the use of different spectroscopic techniques is discussed beyond what the individual authors have been able to interpret often from a few techniques. Effectiveness of solvents used and reaction conditions have also been focused, in order to offer mechanistic understanding for the improvement of mechanical properties. The new observations and findings by comparing all relevant literature will help the reader to look at the whole spectrum of available methods and materials, in addition to focusing on the original biopolymer–graphene work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Petersen K, Væggemose Nielsen P, Bertelsen G et al (1999) Potential of biobased materials for food packaging. Trend Food Sci Technol 10:52–68. doi:10.1016/S0924-2244(99)00019-9

    Article  Google Scholar 

  2. Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36:2905–2920

    Article  Google Scholar 

  3. Mittal V (2007) Polypropylene-layered silicate nanocomposites: filler matrix interactions and mechanical properties. J Thermoplast Compos Mater 20:575–599

    Article  Google Scholar 

  4. Mittal V (2008) Mechanical and gas permeation properties of compatibilized polypropylene–layered silicate nanocomposites. J Appl Polym Sci 107:1350–1361

    Article  Google Scholar 

  5. Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  Google Scholar 

  6. Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly [(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stab 92:802–812

    Article  Google Scholar 

  7. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  Google Scholar 

  8. Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45:3529–3537. doi:10.1007/s10853-010-4395-6

    Article  Google Scholar 

  9. Norazlina H, Kamal Y (2015) Graphene modifications in polylactic acid nanocomposites: a review. Polym Bull 72:931–961

    Article  Google Scholar 

  10. Terzopoulou Z, Kyzas GZ, Bikiaris DN (2015) Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials 8:652–683

    Article  Google Scholar 

  11. Dreyer DR, Ruoff RS, Bielawski CW (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed 49:9336–9344

    Article  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  13. Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15:86–97

    Article  Google Scholar 

  14. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

  15. Boehm H-P (2010) Graphene—how a laboratory curiosity suddenly became extremely interesting. Angew Chem Int Ed 49:9332–9335

    Article  Google Scholar 

  16. Chung DDL (2016) A review of exfoliated graphite. J Mater Sci 51:554–568. doi:10.1007/s10853-015-9284-6

    Article  Google Scholar 

  17. Shokrieh MM, Esmkhani M, Shahverdi HR, Vahedi F (2013) Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the Mechanical properties of epoxy nanocomposites. Sci Adv Mater 5:260–266

    Article  Google Scholar 

  18. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  Google Scholar 

  19. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  20. Depan D, Girase B, Shah JS, Misra RDK (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7:3432–3445

    Article  Google Scholar 

  21. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  22. Dervishi E, Biris AR, Watanabe F et al (2011) Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system. J Mater Sci 47:1910–1919. doi:10.1007/s10853-011-5980-z

    Article  Google Scholar 

  23. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  24. Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301. doi:10.1088/0957-4484/24/20/205301

    Article  Google Scholar 

  25. Guan G, Lu J, Jiang H (2016) Preparation, characterization, and physical properties of graphene nanosheets and films obtained from low-temperature expandable graphite. J Mater Sci 51:926–936. doi:10.1007/s10853-015-9422-1

    Article  Google Scholar 

  26. Chen G, Weng W, Wu D et al (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42:753–759

    Article  Google Scholar 

  27. Celzard A, Mareche JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:3094

    Article  Google Scholar 

  28. Pötschke P, Abdel-Goad M, Pegel S et al (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci A 47:12–19

    Article  Google Scholar 

  29. Yasmin A, Luo J-J, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189

    Article  Google Scholar 

  30. Zheng W, Lu X, Wong S-C (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788

    Article  Google Scholar 

  31. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101. doi:10.1007/s10853-008-2755-2

    Article  Google Scholar 

  32. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  33. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  34. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  Google Scholar 

  35. William S, Hummers JR, Offeman RE et al (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  36. Shao G, Lu Y, Wu F et al (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409. doi:10.1007/s10853-012-6294-5

    Article  Google Scholar 

  37. Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano today 7:137–152

    Article  Google Scholar 

  38. Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly (l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805–10815

    Article  Google Scholar 

  39. Huang H-D, Liu C-Y, Li D et al (2014) Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. J Mater Chem A 2:15853–15863

    Article  Google Scholar 

  40. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698

    Article  Google Scholar 

  41. Nie L, Liu C, Wang J et al (2015) Effects of surface functionalized graphene oxide on the behavior of sodium alginate. Carbohydr Polym 117:616–623

    Article  Google Scholar 

  42. Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydr Polym 110:18–25

    Article  Google Scholar 

  43. Stanier DC, Patil AJ, Sriwong C et al (2014) The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos Sci Technol 95:59–66

    Article  Google Scholar 

  44. He L, Wang H, Xia G et al (2014) Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci 314:510–515

    Article  Google Scholar 

  45. Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236

    Article  Google Scholar 

  46. Yoon OJ, Jung CY, Sohn IY et al (2011) Nanocomposite nanofibers of poly (d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A Appl Sci Manuf 42:1978–1984

    Article  Google Scholar 

  47. Pinto AM, Moreira S, Gonçalves IC et al (2013) Biocompatibility of poly (lactic acid) with incorporated graphene-based materials. Colloids Surf B 104:229–238

    Article  Google Scholar 

  48. Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohydr Polym 94:63–70

    Article  Google Scholar 

  49. Tian M, Qu L, Zhang X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462

    Article  Google Scholar 

  50. Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711

    Article  Google Scholar 

  51. Liu L, Shen Z, Liang S et al (2014) Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films. J Mater Sci 49:321–328. doi:10.1007/s10853-013-7708-8

    Article  Google Scholar 

  52. He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym 88:1100–1108

    Article  Google Scholar 

  53. Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482

    Article  Google Scholar 

  54. Pinto AM, Cabral J, Tanaka DAP et al (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films. Polym Int 62:33–40

    Article  Google Scholar 

  55. Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 115:83513

    Article  Google Scholar 

  56. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr Polym 83:1908–1915

    Article  Google Scholar 

  57. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48:3834–3839

    Article  Google Scholar 

  58. Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48:850–858

    Article  Google Scholar 

  59. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly (l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46

    Article  Google Scholar 

  60. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  61. Yi M, Shen Z, Zhang X, Ma S (2012) Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene. J Mater Sci 47:8234–8244. doi:10.1007/s10853-012-6720-8

    Article  Google Scholar 

  62. Wan L, Liu P, Zhang T et al (2014) Exfoliation and reduction of graphene oxide at low temperature and its resulting electrocapacitive properties. J Mater Sci 49:4989–4997. doi:10.1007/s10853-014-8201-8

    Article  Google Scholar 

  63. Lehtola J, Hakala M, Hamalainen K (2010) Structure of liquid linear alcohols. J Phys Chem B 114:6426–6436

    Article  Google Scholar 

  64. Gao J, Liu F, Liu Y et al (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218

    Article  Google Scholar 

  65. Dreyer DR, Murali S, Zhu Y et al (2011) Reduction of graphite oxide using alcohols. J Mater Chem 21:3443–3447

    Article  Google Scholar 

  66. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  Google Scholar 

  67. Akhavan O, Ghaderi E, Aghayee S et al (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781

    Article  Google Scholar 

  68. Feng Y, Feng N, Du G (2013) A green reduction of graphene oxide via starch-based materials. RSC Adv 3:21466–21474

    Article  Google Scholar 

  69. Akhavan O, Kalaee M, Alavi ZS et al (2012) Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50:3015–3025

    Article  Google Scholar 

  70. Kuila T, Bose S, Khanra P et al (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921

    Article  Google Scholar 

  71. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339

    Article  Google Scholar 

  72. Esfandiar A, Akhavan O, Irajizad A (2011) Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J Mater Chem 21:10907–10914

    Article  Google Scholar 

  73. Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281

    Article  Google Scholar 

  74. Salas EC, Sun Z, Luttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    Article  Google Scholar 

  75. Kim Y-K, Kim M-H, Min D-H (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47:3195–3197

    Article  Google Scholar 

  76. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819

    Article  Google Scholar 

  77. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476

    Article  Google Scholar 

  78. Zhang H-B, Zheng W-G, Yan Q et al (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  Google Scholar 

  79. Dai J, Wang G, Ma L, Wu C (2015) Study on the surface energies and dispersibility of graphene oxide and its derivatives. J Mater Sci 50:3895–3907. doi:10.1007/s10853-015-8934-z

    Article  Google Scholar 

  80. Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites. Ind Eng Chem Res 52:14201–14207

    Article  Google Scholar 

  81. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631–637

    Article  Google Scholar 

  82. Ashori A (2014) Effects of graphene on the behavior of chitosan and starch nanocomposite films. Polym Eng Sci 54:2258–2263

    Article  Google Scholar 

  83. Wang X, Bai H, Yao Z et al (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20:9032–9036

    Article  Google Scholar 

  84. Yin H, Ma Q, Zhou Y et al (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108

    Article  Google Scholar 

  85. Cheng J-S, Du J, Zhu W (2012) Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohydr Polym 88:61–67

    Article  Google Scholar 

  86. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658

    Article  Google Scholar 

  87. Yang X, Tu Y, Li L et al (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713. doi:10.1021/am100222m

    Article  Google Scholar 

  88. Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J Non Cryst Solid 358:525–530

    Article  Google Scholar 

  89. Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym Plastic Technol Engg 53:312–318

    Article  Google Scholar 

  90. Ma J, Liu C, Li R, Wang J (2012) Properties and structural characterization of oxide starch/chitosan/graphene oxide biodegradable nanocomposites. J Appl Polym Sci 123:2933–2944

    Article  Google Scholar 

  91. Kim C-J, Khan W, Kim D-H et al (2011) Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr Polym 86:903–909

    Article  Google Scholar 

  92. Wu Y, Li W, Zhang X et al (2014) Clarification of go acted as a barrier against the crack propagation of the cellulose composite films. Compos Sci Technol 104:52–58

    Article  Google Scholar 

  93. Mahmoudian S, Wahit MU, Imran M et al (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12:5233–5239

    Article  Google Scholar 

  94. Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88:26–30

    Article  Google Scholar 

  95. Feng Y, Zhang X, Shen Y et al (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649

    Article  Google Scholar 

  96. Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344

    Article  Google Scholar 

  97. Yao L, Lu Y, Wang Y, Hu L (2014) Effect of graphene oxide on the solution rheology and the film structure and properties of cellulose carbamate. Carbon 69:552–562

    Article  Google Scholar 

  98. Li W, Xu Z, Chen L et al (2014) A facile method to produce graphene oxide-g-poly (L-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299

    Article  Google Scholar 

  99. Gao J, Chen F, Wang K et al (2011) A promising alternative to conventional polyethylene with poly (propylene carbonate) reinforced by graphene oxide nanosheets. J Mater Chem 21:17627–17630

    Article  Google Scholar 

  100. Barrett JSF, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) Elastomers and Their Graphene Nanocomposites. Macromolecules 47:3926–3941. doi:10.1021/ma500022x

    Article  Google Scholar 

  101. Lei L, Qiu J, Sakai E (2012) Preparing conductive poly (lactic acid)(PLA) with poly (methyl methacrylate)(PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27

    Article  Google Scholar 

  102. Murariu M, Dechief AL, Bonnaud L et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900

    Article  Google Scholar 

  103. Chieng BW, Ibrahim NA, Yunus WMZW et al (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): a comparative study. Polymers 6:2232–2246

    Article  Google Scholar 

  104. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104

    Article  Google Scholar 

  105. Mittal V, Chaudhry AU, Luckachan GE (2014) Biopolymer-Thermally reduced graphene nanocomposites: structural characterization and properties. Mater Chem Phys 147:319–332

    Article  Google Scholar 

  106. Zhang J, Zhang C, Madbouly SA (2015) In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocomposites. J Appl Polym Sci 132:

  107. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352. doi:10.1002/pen.760160512

    Article  Google Scholar 

  108. Liao R, Lei Y, Wan J et al (2012) Dispersing graphene in hydroxypropyl cellulose by utilizing its LCST behavior. Macromol Chem Phys 213:1370–1377

    Article  Google Scholar 

  109. Cheng Y, Feng B, Yang X et al (2013) Electrochemical biosensing platform based on carboxymethyl cellulose functionalized reduced graphene oxide and hemoglobin hybrid nanocomposite film. Sens Act B Chem 182:288–293

    Article  Google Scholar 

  110. Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53:1108–1118

    Article  Google Scholar 

  111. Zhang H, Zhai D, He Y (2014) Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Advances 4:44600–44609

    Article  Google Scholar 

  112. Sridhar V, Lee I, Chun HH, Park H (2013) Graphene reinforced biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Exp Polym Lett 7:320–328

    Article  Google Scholar 

  113. Hassouna F, Laachachi A, Chapron D et al (2011) Development of new approach based on Raman spectroscopy to study the dispersion of expanded graphite in poly (lactide). Polym Degrad Stab 96:2040–2047

    Article  Google Scholar 

  114. Gogoi P, Boruah M, Bora C, Dolui SK (2014) Jatropha curcas oil based alkyd/epoxy resin/expanded graphite (EG) reinforced bio-composite: evaluation of the thermal, mechanical and flame retardancy properties. Prog Org Coat 77:87–93

    Article  Google Scholar 

  115. Wang X, Song L, Yang H et al (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426–3431

    Article  Google Scholar 

  116. Jeon GW, An J-E, Jeong YG (2012) High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Compos B Eng 43:3412–3418

    Article  Google Scholar 

  117. Pubchem TETRAETHYLENEPENTAMINE| C8H23N5 - PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/tetraethylenepentamine#section=Top. Accessed 9 Mar 2016

  118. Barrett J (2014) Physical and Biochemical Strategies for Improving the Yield and Material Properties of Polyhydroxyalkanoate Biopolymers

  119. Pramanik N, De J, Basu RK et al (2016) Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv 6:46116–46133. doi:10.1039/C6RA03233H

    Article  Google Scholar 

  120. Panzavolta S, Bracci B, Gualandi C et al (2014) Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon 78:566–577

    Article  Google Scholar 

  121. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468

    Article  Google Scholar 

  122. Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812

    Article  Google Scholar 

  123. Hu Y, Su X (2013) Chemically functionalized graphene and their applications in electrochemical energy conversion and storage. In: Aliofkhazraei M (ed) Advances in graphene science. InTech, Rijeka

    Google Scholar 

  124. Sullivan EM, Gerhardt RA, Wang B, Kalaitzidou K (2016) Effect of compounding method and processing conditions on the electrical response of exfoliated graphite nanoplatelet/polylactic acid nanocomposite films. J Mater Sci 51:2980–2990. doi:10.1007/s10853-015-9609-5

    Article  Google Scholar 

  125. Huang Y, Qin Y, Zhou Y et al (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler- Natta polymerization. Chem Mater 22:4096–4102

    Article  Google Scholar 

  126. de Fim FC, Guterres JM, Basso NR, Galland GB (2010) Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci A Polym Chem 48:692–698

    Article  Google Scholar 

  127. Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly (methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191

    Article  Google Scholar 

  128. Xue Z, Zhao S, Zhao Z et al (2016) Thermodynamics of dye adsorption on electrochemically exfoliated graphene. J Mater Sci 51:4928–4941. doi:10.1007/s10853-016-9798-6

    Article  Google Scholar 

  129. Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116. doi:10.1007/s10853-016-9913-8

    Article  Google Scholar 

  130. Wu S, Zhao X, Li Y et al (2013) Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J 230:389–395

    Article  Google Scholar 

  131. Li Y, Sun J, Du Q et al (2014) Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydr Polym 102:755–761

    Article  Google Scholar 

  132. Wan Y, Chen X, Xiong G et al (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Exp 4:429–434

    Article  Google Scholar 

  133. Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068

    Article  Google Scholar 

  134. Wang Y, Yadav S, Heinlein T et al (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558

    Article  Google Scholar 

  135. Zhang Y, Liu Y, Wang X et al (2014) Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr Polym 101:392–400

    Article  Google Scholar 

  136. Mohandes F, Salavati-Niasari M (2014) Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Advances 4:25993–26001

    Article  Google Scholar 

  137. Algothmi WM, Bandaru NM, Yu Y et al (2013) Alginate–graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38

    Article  Google Scholar 

  138. Yang H, Li H, Zhai J et al (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246:10–19

    Article  Google Scholar 

  139. Debnath S, Maity A, Pillay K (2014) Magnetic chitosan–GO nanocomposite: synthesis, characterization and batch adsorber design for Cr(VI) removal. J Environ Chem Engg 2:963–973

    Article  Google Scholar 

  140. Li L, Luo C, Li X et al (2014) Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int J Biol Macromol 66:172–178

    Article  Google Scholar 

  141. Li L, Fan L, Sun M et al (2013) Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf B 107:76–83

    Article  Google Scholar 

  142. Liu L, Li C, Bao C et al (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd (II). Talanta 93:350–357

    Article  Google Scholar 

  143. Jiao C, Xiong J, Tao J et al (2016) Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int J Biol Macromol 83:133–141

    Article  Google Scholar 

  144. Najafabadi HH, Irani M, Rad LR et al (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5:16532–16539

    Article  Google Scholar 

  145. Li Y, Du Q, Liu T et al (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95:501–507

    Article  Google Scholar 

  146. Ma T, Chang PR, Zheng P et al (2014) Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue. Chem Eng J 240:595–600

    Article  Google Scholar 

  147. Fan L, Luo C, Sun M et al (2012) Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol 114:703–706

    Article  Google Scholar 

  148. Liu X, Zhou Y, Nie W et al (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50:6113–6123. doi:10.1007/s10853-015-9166-y

    Article  Google Scholar 

  149. Sun L, Fugetsu B (2014) Graphene oxide captured for green use: influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange. Chem Eng J 240:565–573

    Article  Google Scholar 

  150. Fan J, Shi Z, Lian M et al (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433–7443

    Article  Google Scholar 

  151. Li L, Fan L, Luo C et al (2014) Study of fuchsine adsorption on magnetic chitosan/graphene oxide. RSC Advances 4:24679–24685

    Article  Google Scholar 

  152. Sheshmani S, Ashori A, Hasanzadeh S (2014) Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent. Int J Biol Macromol 68:218–224

    Article  Google Scholar 

  153. Wang J, Liu C, Shuai Y et al (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B 113:223–229

    Article  Google Scholar 

  154. Pourjavadi A, Shakerpoor A, Tehrani ZM, Bumajdad A (2015) Magnetic graphene oxide mesoporous silica hybrid nanoparticles with dendritic pH sensitive moieties coated by PEGylated alginate-co-poly (acrylic acid) for targeted and controlled drug delivery purposes. J Polym Res 22:1–13

    Article  Google Scholar 

  155. Lee J, Lee K, Park SS (2016) Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J Mater Sci 51:2761–2770. doi:10.1007/s10853-015-9581-0

    Article  Google Scholar 

  156. Nandgaonkar AG, Wang Q, Fu K et al (2014) A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chem 16:3195–3201

    Article  Google Scholar 

  157. Li M, Wang Y, Liu Q et al (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484

    Article  Google Scholar 

  158. Xiong G, Luo H, Zuo G et al (2015) Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications. Mater Charact 107:419–425

    Article  Google Scholar 

  159. Chen Y, Qi Y, Yan X et al (2014) Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery. J Appl Polym Sci. doi:10.1002/app.40006

    Google Scholar 

  160. Lu B, Li T, Zhao H et al (2012) Graphene-based composite materials beneficial to wound healing. Nanoscale 4:2978–2982

    Article  Google Scholar 

  161. Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81:334–338

    Article  Google Scholar 

  162. Ma Q, Sun H, Hou S (2013) Application of graphene oxide sheets incorporated in the porous calcium alginate films on the glassy carbon electrode for biosensor construction based on myoglobin. J Appl Electrochem 43:975–984

    Article  Google Scholar 

  163. Wei H, Han L, Tang Y et al (2015) Highly flexible heparin-modified chitosan/graphene oxide hybrid hydrogel as a super bilirubin adsorbent with excellent hemocompatibility. J Mater Chem B 3:1646–1654

    Article  Google Scholar 

  164. Valentini L, Bon SB, Fortunati E, Kenny JM (2014) Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films. J Mater Sci 49:1009–1013. doi:10.1007/s10853-013-7776-9

    Article  Google Scholar 

  165. Wang Q, Wang Y, Liu S et al (2012) Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode. Thin Solid Films 520:4459–4464

    Article  Google Scholar 

  166. Liu B, Lian HT, Yin JF, Sun XY (2012) Dopamine molecularly imprinted electrochemical sensor based on graphene–chitosan composite. Electrochim Acta 75:108–114

    Article  Google Scholar 

  167. Han D, Han T, Shan C et al (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 22:2001–2008

    Article  Google Scholar 

  168. Li J, Zhao Y, Wang N et al (2012) Enhanced performance of a MnO 2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. J Mater Chem 22:13002–13004

    Article  Google Scholar 

  169. Guo J, Liu J, Yang B et al (2015) Biodegradable junctionless transistors with extremely simple structure. IEEE 36:908–910

    Google Scholar 

  170. Qian C, Sun J, Yang J, Gao Y (2015) Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Adv 5:14567–14574

    Article  Google Scholar 

  171. Chen H, Huang J, Palaniappan A et al (2016) A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst 141:2335–2346. doi:10.1039/C5AN02623G

    Article  Google Scholar 

  172. Kaplan DL (1998) Introduction to Biopolymers from Renewable Resources. In: Kaplan DDL (ed) Biopolymers from Renewable Resources. Springer, Berlin Heidelberg, pp 1–29

    Chapter  Google Scholar 

  173. Xu Y, Hong W, Bai H et al (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543. doi:10.1016/j.carbon.2009.08.022

    Article  Google Scholar 

  174. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA et al (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226. doi:10.1039/B718289A

    Article  Google Scholar 

  175. Kai W, Hirota Y, Hua L, Inoue Y (2008) Thermal and mechanical properties of a poly(ϵ-caprolactone)/graphite oxide composite. J Appl Polym Sci 107:1395–1400. doi:10.1002/app.27210

    Article  Google Scholar 

  176. Prud’Homme R, Ozbas B, Aksay I, et al (2010) Functional graphene-rubber nanocomposites

  177. Kim H, Miura Y, Macosko CW (2010) Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem Mater 22:3441–3450. doi:10.1021/cm100477v

    Article  Google Scholar 

  178. Fang M, Wang K, Lu H et al (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  Google Scholar 

  179. Song K, Zhao X, Xu Y, Liu H (2013) Modification of graphene oxide via photo-initiated grafting polymerization. J Mater Sci 48:5750–5755. doi:10.1007/s10853-013-7367-9

    Article  Google Scholar 

  180. Duncan TV, Pillai K (2014) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interface 7:2–19

    Article  Google Scholar 

  181. Szabó T, Berkesi O, Forgó P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. doi:10.1021/cm060258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef L. Kokini.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouf, T.B., Kokini, J.L. Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51, 9915–9945 (2016). https://doi.org/10.1007/s10853-016-0238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0238-4

Keywords

Navigation