Skip to main content
Log in

Graphene oxide: the mechanisms of oxidation and exfoliation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxides (GOs) with large sheets and more perfect aromatic structure were prepared by a novel modified Hummers method. We demonstrated that the graphite did not need to be oxidized to such a deep degree as described in Hummers method because the space distance increased little when the oxidation proceeded to a certain extent and the obtained graphite oxides (GTOs) could be fully exfoliated to single layers with high thermal stability. The oxidation mechanism and chemical structure model of GO were proposed by analyzing the evolution of the functional groups with oxidation proceeded based on thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The layer spacing calculated by molecular dynamics simulations coincided with the X-ray diffraction results. Furthermore, the size distribution and thickness of GOs were also studied. The results confirmed that the GOs prepared by the modified method were fully exfoliated to uniform single layers, and this method may be important for efficient exfoliation of GTO to GO and large-scale production of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang M, Zhi L (2009) J Mater Chem 19:5871

    Article  CAS  Google Scholar 

  2. Geim AK (2009) Science 324:1530

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Chen X, He Y, Zhang Q, Li L, Hu D, Yin T (2010) J Mater Sci 45:953. doi:10.1007/s10853-009-4025-3

    Article  CAS  Google Scholar 

  5. Liu Y, Chen Z, Yang G (2011) J Mater Sci 46:882. doi:10.1007/s10853-010-4829-1

    Article  CAS  Google Scholar 

  6. Zhang Y, Pan C (2011) J Mater Sci 46:2622. doi:10.1007/s10853-010-5116-x

    Article  CAS  Google Scholar 

  7. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  8. Wang Y, Xie L, Sha J, Ma Y, Han J, Dong S, Liu H, Fang C, Gong S, Wu Z (2011) J Mater Sci 46:3611. doi:10.1007/s10853-011-5277-2

    Article  CAS  Google Scholar 

  9. Yoon S, In I (2011) J Mater Sci 46:1316. doi:10.1007/s10853-010-4917-2

    Article  CAS  Google Scholar 

  10. Brodie BC (1859) Philos Trans R Soc London 149:249

    Article  Google Scholar 

  11. Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481

    Article  CAS  Google Scholar 

  12. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  13. Su C, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C, Huang Y, Li L (2010) ACS Nano 4:5285

    Article  CAS  Google Scholar 

  14. Zhang L, Li X, Huang Y, Ma YF, Wan XJ, Chen YS (2010) Carbon 48:2367

    Article  CAS  Google Scholar 

  15. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806

    Article  CAS  Google Scholar 

  16. Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos TD, Chhowalla M et al (2011) J Mater Chem 21:11217

    Article  CAS  Google Scholar 

  17. Ang PK, Wang S, Bao Q, Thong JTL, Loh KP (2009) ACS Nano 3:3587

    Article  CAS  Google Scholar 

  18. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477

    Article  CAS  Google Scholar 

  19. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  20. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740

    Article  Google Scholar 

  21. Rafiq R, Cai DY, Jin J, Song M (2010) Carbon 48:4309

    Article  CAS  Google Scholar 

  22. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2010) Electrochim Acta 55:3909

    Article  CAS  Google Scholar 

  23. Szabo T, Berkesi O, Dekany I (2005) Carbon 43:3186

    Article  CAS  Google Scholar 

  24. Hontorialucas C, Lopezpeinado AJ, Lopezgonzalez JDD, Rojascervantes ML, Martinaranda RM (1995) Carbon 33:1585

    Article  CAS  Google Scholar 

  25. Si Y, Samulski ET (2008) Nano Lett 8:1679

    Article  CAS  Google Scholar 

  26. Murugan AV, Muraliganth T, Manthiram A (2009) Chem Mater 21:5004

    Article  CAS  Google Scholar 

  27. Jeong H, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Chem Phys Lett 470:255

    Article  CAS  Google Scholar 

  28. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman JCU (1999) Carbon 37:1785

    Article  CAS  Google Scholar 

  29. Gardner SD, Singamsetty CSK, Booth GL, He G, Pittman CU (1995) Carbon 33:587

    Article  CAS  Google Scholar 

  30. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2007) Nano Lett 8:36

    Article  Google Scholar 

  31. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499

    Article  Google Scholar 

  32. Nakajima T, Mabuchi A, Hagiwara R (1988) Carbon 26:357

    Article  CAS  Google Scholar 

  33. Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Chem Mater 21:3514

    Article  CAS  Google Scholar 

  34. Geng Y, Wang SJ, Kim JK (2009) J Colloid Interface Sci 336:592

    Article  CAS  Google Scholar 

  35. Qian Y, Lu S, Gao F (2011) J Mater Sci 46:3517. doi:10.1007/s10853-011-5260-y

    Article  CAS  Google Scholar 

  36. Chen C, Yang Q, Yang Y, Lv W, Wen Y, Hou P, Wang M, Cheng H (2009) Adv Mater 21:3007

    Article  CAS  Google Scholar 

  37. Stankovich S, Dikin DA, Dommett G, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work by the National Basic Research Program of China (“973 Program”, Grant Nos.: 2011CB605602 and 2011CB605603) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, G., Lu, Y., Wu, F. et al. Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47, 4400–4409 (2012). https://doi.org/10.1007/s10853-012-6294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6294-5

Keywords

Navigation