Skip to main content

Advertisement

Log in

Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sonication-assisted liquid-phase exfoliation of graphite makes facile, scalable, and low-cost graphene production possible, but there is little information about how sonication-related factors such as vessel diameter (D) and liquid height (H) affect this process and how to scale-up this technique. In this article, the dependence of the sonication-assisted few-layer graphene (FLG) production on D and H was investigated based on experiments and numerical simulation which was performed by finite element method to determine cavitation-related parameters. It was found that by essentially changing the cavitation phenomenon, D and H could critically affect the FLG concentration, FLG yield, injected power, and production efficiency. Combined experimental and simulational analyses reveal that though D and H can change both cavitation volume and cavitation volume fraction, it is the cavitation volume fraction that directly relates to the FLG concentration and production efficiency with a monotonically increasing trend, while the FLG yield and injected power are almost proportional to the cavitation volume, which in turn follows a linear increasing trend with the sample volume. The practical importance for industrial FLG production may lie in the following: (1) D and H should be carefully designed to obtain high cavitation volume fraction to gain high production efficiency and FLG concentration or output-input ratio and (2) large D, H, or sample volume is necessary for achieving large cavitation volume to enhance the FLG yield. Moreover, enhancement in pressure amplitude or cavitation intensity could also favor FLG production. These results have verified the importance of D and H which are often ignored when studying graphene production, and will provide important information on designing large-sized vessels for mass-producing graphene by sonication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Geim AK (2009) Science 324:1530

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  4. Inagaki M, Kim YA, Endo M (2011) J Mater Chem 21:3280

    Article  CAS  Google Scholar 

  5. Chung DDL (2002) J Mater Sci 37:1475. doi:10.1023/A:1014915307738

    Article  CAS  Google Scholar 

  6. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Crit Rev Solid State 35:52

    Article  CAS  Google Scholar 

  7. Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) J Mater Sci 47:4400. doi:10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

  8. Coleman JN (2009) Adv Funct Mater 19:1

    Article  Google Scholar 

  9. Khvostikova O, Hermann H, Wendrock H, Gemming T, Thomas J, Ehrenberg H (2011) J Mater Sci 46:2422. doi:10.1007/s10853-010-5088-x

    Article  CAS  Google Scholar 

  10. Cui X, Zhang C, Hao R, Hou Y (2011) Nanoscale 3:2118

    Article  CAS  Google Scholar 

  11. Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi:10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  12. Liu WW, Wang JN (2011) Chem Commun 47:6888

    Article  CAS  Google Scholar 

  13. Choi E-Y, Choi WS, Lee YB, Noh YY (2011) Nanotechnology 22:365601

    Article  Google Scholar 

  14. Shih C-J, Vijayaraghavan A, Krishnan R et al (2011) Nat Nanotechnol 6:439

    Article  CAS  Google Scholar 

  15. Li B, Zhong W-H (2011) J Mater Sci 46:5595. doi:10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  16. Yoon S, In I (2011) J Mater Sci 46:1316. doi:10.1007/s10853-010-4917-2

    Article  CAS  Google Scholar 

  17. Cravotto G, Cintas P (2010) Chem Eur J 16:5246

    CAS  Google Scholar 

  18. Skrabalak SE (2009) Phys Chem Chem Phys 11:4930

    Article  CAS  Google Scholar 

  19. Cao JW, Lofaj F, Okada A (2001) J Mater Sci 36:1301. doi:10.1023/A:1004818901119

    Article  CAS  Google Scholar 

  20. Torres-Sanchez C, Corney JR (2011) J Mater Sci 46:490. doi:10.1007/s10853-010-4944-z

    Article  CAS  Google Scholar 

  21. Yi M, Li J, Shen Z, Zhang X, Ma S (2011) Appl Phys Lett 99:123112

    Article  Google Scholar 

  22. Shen Z, Li J, Yi M, Zhang X, Ma S (2011) Nanotechnology 22:365306

    Article  Google Scholar 

  23. Gogate PR, Tayal RK, Pandit AB (2006) Curr Sci India 91:35

    CAS  Google Scholar 

  24. Sutkar VS, Gogate PR (2009) Chem Eng J 155:26

    Article  CAS  Google Scholar 

  25. Nanzai B, Okitsu K, Takenaka N, Bandow H, Tajima N, Maed Y (2009) Ultrason Sonochem 16:163

    Article  CAS  Google Scholar 

  26. Kojima Y, Koda S, Nomura H (1998) Jpn J Appl Phys 37:2992

    Article  CAS  Google Scholar 

  27. Asakura Y, Nishida T, Matsuoka T, Koda S (2008) Ultrason Sonochem 15:244

    Article  CAS  Google Scholar 

  28. Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) Small 6:864

    Article  CAS  Google Scholar 

  29. Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon SB, Piccinini M, Illescas J, Mariani A (2011) J Mater Chem 21:3428

    Article  CAS  Google Scholar 

  30. Mason TJ, Lorimer JP, Bates DM (1992) Ultrasonics 30:40

    Article  CAS  Google Scholar 

  31. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Langmuir 26:3208

    Article  CAS  Google Scholar 

  32. Mason TJ, Lorimer JP (2002) Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley–VCH, Weinheim

    Google Scholar 

  33. Koda S, Kimura T, Kondo T, Mitome H (2003) Ultrason Sonochem 10:149

    Article  CAS  Google Scholar 

  34. Berlan J, Mason TJ (1992) Ultrasonics 30:203

    Article  CAS  Google Scholar 

  35. Noltingk BE, Neppiras EA (1950) Proc Phys Soc B 63:674

    Article  Google Scholar 

  36. Chen W, Gu C, Zhao K, Shen F (2006) J Mater Sci 41:2151. doi:10.1007/s10853-006-5209-8

    Article  CAS  Google Scholar 

  37. Niemczewski B (1980) Ultrasonics 18:107

    Article  CAS  Google Scholar 

  38. Herbert E, Balibar S, Caupin F (2006) Phys Rev E 74:041603

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Funds for Co-construction Project of Beijing Municipal Commission of Education, the “985” Project of Ministry of Education of China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, M., Shen, Z., Zhang, X. et al. Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene. J Mater Sci 47, 8234–8244 (2012). https://doi.org/10.1007/s10853-012-6720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6720-8

Keywords

Navigation