Skip to main content
Log in

Colorimetric detection of Cu2+ using of a mixture of ponceau 6R and a cationic polyelectrolyte in aqueous solution

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A colorimetric chemosensor is reported for Cu2+ by a simple mixture of two commercially available reagents, ponceau 6R (P6R) and poly(diallyldimethylammonium chloride) (PDADMAC) in an aqueous solution. P6R interacted electrostatically with PDADMAC to form the self-aggregate of P6R and exhibit a different sensing capability from P6R alone. The mixture showed high sensitivity and specific selectivity for detection of Cu2+ compared with various physiological and environmentally important metal ions. The addition of Cu2+ caused a hypsochromic shift with a distinct color change from red to yellow. While, upon adding Cu2+ to P6R alone, the solution underwent no distinct color change. The binding mode of P6R with Cu2+ was determined to be a 2:1 stoichiometry from Job plot and Cu2+ titration experiments. The results provide an easy method for developing new colorimetric sensors for metal ions by a combination of anionic dyes and cationic polyelectrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saleem, M., Lee, K.H.: Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 5, 72150–72287 (2015)

    Article  CAS  Google Scholar 

  2. Quang, D.T., Kim, J.S.: Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 110, 6280–6301 (2010)

    Article  CAS  Google Scholar 

  3. Kim, H.N., Ren, W.X., Kim, J.S., Yoon, J.: Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41, 3210–3244 (2012)

    Article  CAS  Google Scholar 

  4. Sakamaki, M., Aikawa, S., Fukushima, Y.: Colorimetric determination of Pb2+ in perfect aqueous solution using carminic acid as a selective chemosensor. J. Fluoresc. 27, 1929–1935 (2017)

    Article  CAS  Google Scholar 

  5. Plastino, J., Green, E.L., Sanders-Loehr, J., Klinman, J.P.: An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from hansenula polymorpha. Biochemistry 38, 8204–8216 (1999)

    Article  CAS  Google Scholar 

  6. Harris, E.D.: Copper as a cofactor and regulator of copper, zinc superoxide dismutase. J. Nutr. 122, 636–640 (1992)

    Article  CAS  Google Scholar 

  7. Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G.: Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044 (2006)

    Article  CAS  Google Scholar 

  8. Que, E.L., Domaille, D.W., Chang, C.J.: Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008)

    Article  CAS  Google Scholar 

  9. Andreini, C., Banci, L., Bertini, I., Rosato, A.: Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J. Proteome Res. 7, 209–216 (2008)

    Article  CAS  Google Scholar 

  10. Bruijn, L.I., Miller, T.M., Cleveland, D.W.: Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004)

    Article  CAS  Google Scholar 

  11. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L., Beyreuther, K.: The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271, 1406–1409 (1996)

    Article  CAS  Google Scholar 

  12. Donnelly, P.S., Xiao, Z., Wedd, A.G.: Copper and Alzheimer’s disease. Curr. Opin. Chem. Biol. 11, 128–133 (2007)

    Article  CAS  Google Scholar 

  13. Ninomiya, R., Koizumi, N., Murata, K.: Concentrations of cadmium, zinc, copper, iron, and metallothionein in liver and kidney of nonhuman primates. Biol. Trace Elem. Res. 87, 95–111 (2002)

    Article  CAS  Google Scholar 

  14. Jonas, R.B.: Acute copper and cupric ion toxicity in an estuarine microbial community. Appl. Environ. Microbiol. 55, 43–49 (1989)

    Article  CAS  Google Scholar 

  15. WHO: Guidelines for Drinking Water Quality. WHO, Geneva (2008)

    Google Scholar 

  16. Wang, R., Wang, W., Ren, H., Chae, J.: Detection of copper ions in drinking water using the competitive adsorption of proteins. Biosens. Bioelectron. 57, 179–185 (2014)

    Article  CAS  Google Scholar 

  17. Xiong, S., Ye, S., Hu, X., Xie, F.: Electrochemical detection of ultra-trace Cu(II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochim. Acta 217, 24–33 (2016)

    Article  CAS  Google Scholar 

  18. Teodoro, M.T.F., de Dias, F.S., da Silva, D.G., Bezerra, M.A., Dantas, A.F., Teixeira, L.S.G., Pereira, A.L.C.: Determination of copper total and speciation in food samples by flame atomic absorption spectrometry in association with solid-phase extraction with bamboo (Bambusa vulgaris) fiber loaded with bathocuproine. Microchem. J. 132, 351–357 (2017)

    Article  CAS  Google Scholar 

  19. Li, J., Zeng, Y., Hu, Q., Yu, X., Guo, J., Pan, Z.: A fluorescence “turn-on” chemodosimeter for Cu2+ in aqueous solution based on the ion promoted oxidation. Dalton Trans. 41, 3623–3626 (2012)

    Article  CAS  Google Scholar 

  20. Meng, Q.T., Zhang, R., Jia, H.M., Gao, X., Wang, C.P., Shi, Y., Everest-Dass, A.V., Zhang, Z.Q.: A reversible fluorescence chemosensor for sequentially quantitative monitoring copper and sulfide in living cells. Talanta 143, 294–301 (2015)

    Article  CAS  Google Scholar 

  21. Li, G., Tao, F., Wang, H., Wang, L., Zhang, J., Ge, P., Liu, L., Tong, Y., Sun, S.: A novel reversible colorimetric chemosensor for the detection of Cu2+ based on a water-soluble polymer containing rhodamine receptor pendants. RSC Adv. 5, 18983–18989 (2015)

    Article  CAS  Google Scholar 

  22. Wu, X., Gong, X., Dong, W., Ma, J., Chao, J., Li, C., Wang, L., Dong, C.: A novel fluorescein-based colorimetric probe for Cu2+ detection. RSC Adv. 6, 59677–59683 (2016)

    Article  CAS  Google Scholar 

  23. Tavallali, H., Deilamy-Rad, G., Ali Karimi, M., Rahimy, E.: A novel dye-based colorimetric chemosensors for sequential detection of Cu2+ and cysteine in aqueous solution. Anal. Biochem. 583, 113376 (2019)

    Article  CAS  Google Scholar 

  24. Butler, G.B., Angelo, R.J.: Preparation and polymerization of unsaturated quaternary ammonium compounds VIII a proposed alternating intramolecular-intermolecular chain propagation. J. Am. Chem. Soc. 79, 3128–3131 (1957)

    Article  CAS  Google Scholar 

  25. Assem, Y., Chaffey-Millar, H., Barner-Kowollik, C., Wegner, G., Agarwal, S.: Controlled/living ring-closing cyclopolymerization of diallyldimethylammonium chloride via the reversible addition fragmentation chain transfer process. Macromolecules 40, 3907–3913 (2007)

    Article  CAS  Google Scholar 

  26. Wang, Y., Chen, J., Jiao, H., Chen, Y., Li, W., Zhang, Q., Yu, C.: Polymer-templated perylene-probe noncovalent self-assembly: a new strategy for label-free ultrasensitive fluorescence turn-on biosensing. Chem. Eur. J. 19, 12846–12852 (2013)

    Article  CAS  Google Scholar 

  27. Dubas, S.T., Limsavarn, L., Iamsamai, C., Potiyaraj, P.J.: Assembly of polyelectrolyte multilayers on nylon fibers. J. Appl. Polym. Sci. 101, 3286–3290 (2006)

    Article  CAS  Google Scholar 

  28. Sakamaki, M., Aikawa, S., Fukushima, Y.: Colorimetric chemosensor for Zn2+ based on pyrogallol red and poly(diallyldimethylammonium chloride) in aqueous solution. Polym. Bull. 75, 1667–1680 (2018)

    Article  CAS  Google Scholar 

  29. Inoue, K., Aikawa, S., Sakamaki, M., Fukushima, Y.: Colorimetric chemosensor for Fe2+ and Fe3+ based on a ternary mixture of an anionic dye, a cationic polyelectrolyte, and a metal chelator in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 91, 171–177 (2018)

    Article  CAS  Google Scholar 

  30. Inoue, K., Aikawa, S., Sakamaki, M., Fukushima, Y.: Colorimetric Co2+ sensor based on an anionic pyridylazo dye and a cationic polyelectrolyte in aqueous solution. Polym. Int. 67, 1589–1594 (2018)

    Article  CAS  Google Scholar 

  31. Inoue, K., Aikawa, S., Fukushima, Y.: Colorimetric detection of Hg2+ using a mixture of an anionic azo dye and a cationic polyelectrolyte in aqueous solution. Polym. Int. 67, 755–760 (2018)

    Article  CAS  Google Scholar 

  32. Inoue, K., Aikawa, S., Fukushima, Y.: Colorimetric chemosensor for Ni2+ based on alizarin complexone and a cationic polyelectrolyte in aqueous solution. J. Appl. Polym. Sci. 136, 47496 (2019)

    Article  Google Scholar 

  33. Fukushima, Y., Aikawa, S.: Colorimetric detection of Ni2+ based on an anionic triphenylmethane dye and a cationic polyelectrolyte in aqueous solution. Tetrahedron Lett. 60, 675–680 (2019)

    Article  CAS  Google Scholar 

  34. Fukushima, Y., Aikawa, S.: Colorimetric detection of Hg2+ based on nuclear fast red and a cationic polyelectrolyte in aqueous solution. J. Fluoresc. 30, 175–180 (2020)

    Article  Google Scholar 

  35. Fukushima, Y., Aikawa, S.: Colorimetric detection of Mn(II) based on a mixture of an anionic pyridylazo dye and a cationic polyelectrolyte in aqueous solution. Color Technol. 136, 450–456 (2020)

    Article  CAS  Google Scholar 

  36. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  37. Grynkiewicz, G., Poenie, M., Tsien, R.Y.: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Fukushima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukushima, Y., Aikawa, S. Colorimetric detection of Cu2+ using of a mixture of ponceau 6R and a cationic polyelectrolyte in aqueous solution. J Incl Phenom Macrocycl Chem 100, 143–148 (2021). https://doi.org/10.1007/s10847-021-01064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01064-8

Keywords

Navigation