Skip to main content
Log in

Experimental and computational studies of naringin/cyclodextrin inclusion complexation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study investigated inclusion formation and the physicochemical properties of naringin/cyclodextrin through a combined computational and experimental approach. Molecular dynamics simulations were applied to investigate the thermodynamics and geometry of naringin/cyclodextrin cavity docking. The complexes were investigated by UV, FT-IR, DSC, XRD, SEM, 2D-NOSEY and 1H-NMR analyses. Clearly visible protons belonging to naringin and chemical shift displacements of the H3 and H5 protons in cyclodextrin were anticipated in the formation of an inclusion complex. Naringin solubility increased linearly with increasing cyclodextrin concentration (displaying an AL profile). The simulations indicated that the phenyl group of naringin was located deep within the cyclodextrin cavity, while the glycoside group of naringin was on the plane of the wider rim of cyclodextrin. The simulation and molecular modeling results indicate that (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) provided the more stable inclusion complex. This result was also in good concordance with the stability constants that had been determined by the phase solubility method. The consistency of the computational and experimental results indicates their reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ji, Y., Wang, L., Watts, D.C., Qiu, H., You, T., Deng, F., Wu, X.: Controlled-release naringin nanoscaffold for osteoporotic bone healing. Dent. Mater. 30, 1263 (2014)

    Article  CAS  Google Scholar 

  2. Leem, E., Nam, J.H., Jeon, M., Shin, W., Won, S., Park, S., Choi, M., Jin, B.K., Jung, U.J., Kim, S.R.: Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J. Nutr. Biochem. 25, 801 (2014)

    Article  CAS  Google Scholar 

  3. Özyürek, M., Akpınar, D., Bener, M., Türkkan, B., Güçlü, K., Apak, R.: Novel oxime based flavanone, naringin-oxime: synthesis, characterization and screening for antioxidant activity. Chem-Biol. Interact. 212, 40 (2014)

    Article  Google Scholar 

  4. Cao, X., Lin, W., Liang, C., Zhang, D., Yang, F., Zhang, Y., Zhang, X., Feng, J., Chen, C.: Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway. Immunol. Res. 62, 357 (2015)

    Article  CAS  Google Scholar 

  5. Shpigelman, A., Shoham, Y., Israeli-Lev, G., Livney, Y.D.: β-Lactoglobulin–naringenin complexes: nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocolloid 40, 214 (2014)

    Article  CAS  Google Scholar 

  6. Sangpheak, W., Kicuntod, J., Schuster, R., Rungrotmongkol, T., Wolschann, P., Kungwan, N., Viernstein, H., Mueller, M., Pongsawasdi, P.: Physical properties and biological activities of hesperetin and naringenin in complex with methylated beta-cyclodextrin. Beilstein. J. Org. Chem. 11, 2763 (2015)

    CAS  Google Scholar 

  7. Lee, S.J., Kim, J., Kim, M.J., Kitaoka, M., Park, C.S., Lee, S.Y., Ra, M., Moon, T.W., Robyt, J.F., Park, K.H.: Transglycosylation of naringin by bacillus stearothermophilus maltogenic amylase to give glycosylated naringin. J. Agric. Food. Chem. 47, 3669 (1999)

    Article  CAS  Google Scholar 

  8. Felton, L.A., Popescu, C., Wiley, C., Esposito, E.X., Lefevre, P., Hopfinger, A.J.: Experimental and computational studies of physicochemical properties influence NSAID-cyclodextrin complexation. AAPS PharmSciTech 15, 872 (2014)

    Article  CAS  Google Scholar 

  9. Fernandes, A., Ivanova, G., Bras, N.F., Mateus, N., Ramos, M.J., Rangel, M., de Freitas, V.: Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and beta-cyclodextrin. Carbohydr. Polym. 102, 269 (2014)

    Article  CAS  Google Scholar 

  10. Kicuntod, J., Khuntawee, W., Wolschann, P., Pongsawasdi, P., Chavasiri, W., Kungwan, N., Rungrotmongkol, T.: Inclusion complexation of pinostrobin with various cyclodextrin derivatives. J. Mol. Graph. Model. 63, 91 (2016)

    Article  CAS  Google Scholar 

  11. Sangpheak, W., Khuntawee, W., Wolschann, P., Pongsawasdi, P., Rungrotmongkol, T.: Enhanced stability of a naringenin/2,6-dimethyl beta-cyclodextrin inclusion complex: molecular dynamics and free energy calculations based on MM- and QM-PBSA/GBSA. J. Mol. Graph. Model. 50, 10 (2014)

    Article  CAS  Google Scholar 

  12. Whang, H.S., Vendeix, F.A., Gracz, H.S., Gadsby, J., Tonelli, A.: NMR studies of the inclusion complex of cloprostenol sodium salt with beta-cyclodextrin in aqueous solution. Pharm. Res. 25, 1142 (2008)

    Article  CAS  Google Scholar 

  13. Savic, I.M., Savic-Gajic, I.M., Nikolic, V.D., Nikolic, L.B., Radovanovic, B.C., Milenkovic-Andjelkovic, A.: Enhencemnet of solubility and photostability of rutin by complexation with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macro. 86, 33 (2016)

    Article  CAS  Google Scholar 

  14. Savic-Gajic, I., Savic, I.M., Nikolic, V.D., Nikolic, L.B., Popsavin, M.M., Kapor, A.J.: Study of the solubility, photostability and structure of inclusion complexes of carvedilol with β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macro. 86, 7 (2016)

    Article  CAS  Google Scholar 

  15. Savic, I.M., Nikolic, V.D., Savic-Gajic, I., Nikolic, L.B., Radovanovic, B.C., Mladenovic, J.D.: Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macro. 82, 383 (2015)

    Article  CAS  Google Scholar 

  16. Tačić, A., Savić, I., Nikolić, V., Savić, I., Ilić-Stojanović, S., Ilić, D., Petrović, S., Popsavin, M., Kapor, A.: Inclusion complexes of sulfanilamide with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macro. 80, 113 (2014)

    Article  Google Scholar 

  17. Xiao, C., Li, K., Huang, R., He, G., Zhang, J., Zhu, L., Yang, Q., Jiang, K., Jin, Y., Lin, J.: Investigation of inclusion complex of epothilone A with cyclodextrins. Carbohydr. Polym. 102, 297 (2014)

    Article  CAS  Google Scholar 

  18. Zhang, J., Li, K., Jiang, K., Cong, Y., Pu, S., Xie, X., Jin, Y., Lin, J.: Development of an oral satraplatin pharmaceutical formulation by encapsulation with cyclodextrin. RSC Adv. 6, 17074 (2016)

    Article  CAS  Google Scholar 

  19. Jiao, A., Zhou, X., Xu, X., Jin, Z.: Molecular dynamics simulations of cyclodextrin–cumene hydroperoxide complexes in water. Comput. Theor. Chem. 1013, 1 (2013)

    Article  CAS  Google Scholar 

  20. Boonyarattanakalin, K., Wolschann, P., Toochinda, P., Lawtrakul, L.: Molecular dynamics simulations of UC781-cyclodextrins inclusion complexes in aqueous solution. Eur. J. Pharm. Sci. 47, 752 (2012)

    Article  CAS  Google Scholar 

  21. Dandawate, P., Vemuri, K., Khan, E.M., Sritharan, M., Padhye, S.: Synthesis, characterization and anti-tubercular activity of ferrocenyl hydrazones and their beta-cyclodextrin conjugates. Carbohydr. Polym. 108, 135 (2014)

    Article  CAS  Google Scholar 

  22. Higuchi, T., Connor, K.A. (1965) Phase-solubility techniques. In: Reilly, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation. Wiley, New York

    Google Scholar 

  23. Madan, J., Baruah, B., Nagaraju, M., Abdalla, M.O., Yates, C., Turner, T., Rangari, V., Hamelberg, D., Aneja, R.: Molecular cycloencapsulation augments solubility and improves therapeutic index of brominated noscapine in prostate cancer cells. Mol. Pharm. 9, 1470 (2012)

    CAS  Google Scholar 

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, J.T., Kudin, K.N., Burant, J.C. (eds.): Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford (2004)

    Google Scholar 

  25. Rajendiran, N., Siva, S.: Inclusion complex of sulfadimethoxine with cyclodextrins: preparation and characterization. Carbohydr. Polym. 101, 828 (2014)

    Article  CAS  Google Scholar 

  26. Siva, S., Kothai Nayaki, S., Rajendiran, N.: Fabrication of cyclodextrins-procainamide supramolecular self-assembly: shape-shifting of nanosheet into microtubular structure. Carbohydr. Polym. 122, 123 (2015)

    Article  CAS  Google Scholar 

  27. Boonyarattanakalin, K., Viernstein, H., Wolschann, P., Lawtrakul, L.: Influence of ethanol as a co-solvent in cyclodextrin inclusion complexation: a molecular dynamics study. Sci. Pharm. 83, 387 (2015)

    Article  CAS  Google Scholar 

  28. Chiang, P.C., Shi, Y., Cui, Y.: Temperature dependence of the complexation mechanism of celecoxib and hydroxyl-beta-cyclodextrin in aqueous solution. Pharmaceutics. 6, 467 (2014)

    Article  CAS  Google Scholar 

  29. Wood, D.J., Hruska, F.E., Saenger, W.: 1 H NMR study of the inclusion of aromatic molecules in α-cyclodextrin. J. Am. Chem. Soc. 99 (1977)

  30. Liu, M., Chen, A., Wang, Y., Wang, C., Wang, B., Sun, D.: Improved solubility and stability of 7-hydroxy-4-methylcoumarin at different temperatures and pH values through complexation with sulfobutyl ether-beta-cyclodextrin. Food Chem. 168, 270 (2015)

    Article  CAS  Google Scholar 

  31. Khuntawee, W., Wolschann, P., Rungrotmongkol, T., Wong-ekkabut, J., Hannongbua, S.: Molecular dynamics simulations of the interaction of beta cyclodextrin with a lipid bilayer. J. Chem. Inf. Model. 55, 1894 (2015)

    Article  CAS  Google Scholar 

  32. Koehler, J.E., Saenger, W., van Gunsteren, W.F.: On the occurrence of three-center hydrogen bonds in cyclodextrins in crystalline form and in aqueous solution: comparison of neutron diffraction and molecular dynamics results. J. Biomol. Struct. Dyn. 6, 181 (1988)

    Article  CAS  Google Scholar 

  33. Tekpinar, M., Yildirim, A., Wassenaar, T.A.: Molecular dynamics study of the effect of active site protonation on Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Eur. Biophys. J. 44, 685 (2015)

    Article  CAS  Google Scholar 

  34. Lee, S.J., Kim, J.C., Kim, M.J., Kitaoka, M., Park, C.S., Lee, S.Y., Ra, M.J., Moon, T.W., Robyt, J.F., Park, K.H.: Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylase to give glycosylated naringin. J. Agric. Food. Chem. 47, 3669 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Chang jiang Scholars and Innovative Research Team in University (No. IRT13095), the National Natural Science Foundation of China (Nos. 21442006, 21262043 and 20902079). The authors thank the High Performance Computing Center at Yunnan University for use of the high performance computing platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Huang, Yi Jin or Jun Lin.

Additional information

Hui-Huan Yan, Jian-Qiang Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, HH., Zhang, JQ., Ren, SH. et al. Experimental and computational studies of naringin/cyclodextrin inclusion complexation. J Incl Phenom Macrocycl Chem 88, 15–26 (2017). https://doi.org/10.1007/s10847-017-0704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0704-x

Keywords

Navigation