Skip to main content
Log in

Leg Centroidal Dynamics Based New Locomotion Principle of a Quadruped Robot with On-line Legged Motion Generation

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a novel legged locomotion principle for tracking the quadruped-robot base spatial motion which can generate automatically the trotting and walking gaits without flight phases. The principle is based on a new legged locomotion generator using the robot centroidal properties without a massless-leg assumption. Our quadruped robot is newly designed with symmetric legged dynamics properties using parallelogram mechanisms, and the corresponding generalized dynamics model is built. The centroidal momentum and dynamics models are established by combining the centroidal properties of the base and each leg, in which the virtual joint between the base and each leg CoM is used instead of the real joints. The stance legs follow the base motion with respect to contact constraints. The swing legs compensate for the delay influences (to centroidal motion) by the stance legs. By combining the whole-body kinematics model and the kinematics constraints relating to the contact constraints and the parallelogram mechanism, the adaptive swing-leg motion is achieved in the running process without pre-defined trajectories. When two swing legs land at different timings, the walking gait is applied. We also propose a new state machine for switching the locomotion gaits between walking and trotting, which also serves the torque controller which determines the dimension of the legged control states and the contact Jacobian. We apply our hierarchical torque controller to enable the robot with compliant dynamics properties. Therefore, our new locomotion principle integrates the system design, motion generation and whole-body torque control together, so that this one common framework is able to handle several locomotion gaits. To verify the usefulness and validity of our new locomotion principle based legged motion generator, we run several simulations: walking, trotting, turning, recovering from big lateral push force acting on the base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceituno-Cabezas, B., Mastalli, C., Dai, H., Focchi, M., Radulescu, A., Caldwell, D.G., Cappelletto, J., Grieco, J.C., Fernández-López, G, Semini, C.: Simultaneous contact, gait, and motion planning for robust multilegged locomotion via mixed-integer convex optimization. IEEE Robot. Autom. Lett. 3(3), 2531–2538 (2017)

    Google Scholar 

  2. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: 2013 IEEE International Conference on Robotics and Automation, pp 2554–2561. IEEE (2013)

  3. Buehler, M., Playter, R., Raibert, M.: Robots Step Outside. In: Int. Symp. Adaptive Motion of Animals and Machines (AMAM), pp 1–4. Ilmenau, Germany (2005)

  4. Dafarra, S., Romano, F., Nori, F.: Torque-controlled stepping-strategy push recovery: design and implementation on the iCub humanoid Robot. In: 2016 IEEE-RAS 16Th International Conference on Humanoid Robots, pp 152–157. IEEE, Humanoids (2016)

  5. Dai, H., Valenzuela, A., Tedrake, R.: Whole-body motion planning with centroidal dynamics and full kinematics. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp 295–302. IEEE (2014)

  6. Deits, R., Tedrake, R.: Footstep planning on uneven terrain with mixed-integer convex optimization. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp 279–286. IEEE (2014)

  7. Doha, E.H., Bhrawy, A., Saker, M.: Integrals of bernstein polynomials: an application for the solution of high even-order differential equations. Appl. Math. Lett. 24(4), 559–565 (2011)

    Article  MathSciNet  Google Scholar 

  8. Du, W., Fnadi, M., Benamar, F.: Whole-body motion tracking for a quadruped-on-wheel robot via a compact-form controller with improved prioritized optimization. IEEE Robot. Autom. Lett. 5(2), 516–523 (2020)

    Article  Google Scholar 

  9. Du, W., Fnadi, M., Benamar, F.: Integration of prioritized impedance controller in hierarchical operational-space torque control frameworks for locomotion robots. Multibody System Dynamics (submitted) (2021)

  10. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014)

    MATH  Google Scholar 

  11. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: Qpoases: A parametric active-set algorithm for quadratic programming. Math. Programm. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fnadi, M., Du, W., Plumet, F., Benamar, F.: Constrained model predictive control for dynamic path tracking of a bi-steerable rover on slippery grounds. Control Engineering Practice (Under Review) (2020)

  13. Garofalo, G., Henze, B., Englsberger, J., Ott, C.: On the inertially decoupled structure of the floating base robot dynamics. In: IFAC-Papersonline, Elsevier, vol. 48, pp 322–327 (2015)

  14. Gehring, C., Bellicoso, C.D., Coros, S., Bloesch, M., Fankhauser, P., Hutter, M., Siegwart, R.: Dynamic trotting on slopes for quadrupedal robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 5129–5135. IEEE (2015)

  15. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theoret. Biol. 232(3), 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  16. Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J.-K., Grizzle, J.: Feedback Control of a Cassie Bipedal Robot: Walking, standing, and riding a segway. In: 2019 American Control Conference (ACC), pp 4559–4566. IEEE (2019)

  17. Hutter, M.: Starleth & Co.: Design and control of legged robots with compliant actuation. PhD thesis, ETH Zurich (2013)

  18. Hutter, M., Remy, C.D., Hoepflinger, M.A., Siegwart, R.: High compliant series elastic actuation for the robotic leg ScarlETH. In: Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR), EPFL-CONF-175826 (2011)

  19. Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C.D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., et al.: Anymal-A highly mobile and dynamic quadrupedal robot. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pp 38–44. IEEE (2016)

  20. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the mit cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)

    Article  Google Scholar 

  21. Khan, H., Kitano, S., Gao, Y., Caldwell, D.G., Semini, C.: Development of a lightweight on-board hydraulic system for a quadruped robot. In: 14TH Scandinavian International Conference on Fluid Power-SICFP (2015)

  22. Kim, J.T., San Cho, J., Park, B.-Y., Park, S., Lee, Y.: Experimental investigation on the design of leg for a hydraulic actuated quadruped robot. In: IEEE ISR 2013, pp 1–5. IEEE (2013)

  23. Kumar, D., Sarangi, S.: Dynamic modeling of a dielectric elastomeric spherical actuator: an energy-based approach. Soft Mater. 1–10 (2019)

  24. Lee, S.-H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012)

    Article  Google Scholar 

  25. Luh, J.Y., Walker, M.W., Paul, R.P.: On-line computational scheme for mechanical manipulators (1980)

  26. Maes, L.D., Herbin, M., Hackert, R., Bels, V.L., Abourachid, A.: Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Experiment. Biol. 211 (1), 138–149 (2008)

    Article  Google Scholar 

  27. Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Hierarchical planning of dynamic movements without scheduled contact sequences. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 4636–4641. IEEE (2016)

  28. Mastalli, C., Budhiraja, R., Merkt, W., Saurel, G., Hammoud, B., Naveau, M., Carpentier, R.L.J., Vijayakumar, S., Mansard, N.: Crocoddyl: An efficient and versatile framework for multi-contact optimal control. In: IEEE International Conference on Robotics and Automation (ICRA) (2020)

  29. Melon, O., Geisert, M., Surovik, D., Havoutis, I., Fallon, M.: Reliable trajectories for dynamic quadrupeds using analytical costs and learned initializations. arXiv:200206719 (2020)

  30. Nava, G., Romano, F., Nori, F., Pucci, D.: Stability analysis and design of momentum-based controllers for humanoid robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 680–687. IEEE (2016)

  31. Nava, G., Fiorio, L., Traversaro, S., Pucci, D.: Position and attitude control of an underactuated flying humanoid robot. In: 2018 IEEE-RAS 18Th International Conference on Humanoid Robots, pp 1–9. IEEE, Humanoids (2018)

  32. Orin, D.E., Goswami, A.: Centroidal momentum matrix of a humanoid robot: Structure and properties. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 653–659. IEEE (2008)

  33. Orin, D.E., Goswami, A., Lee, S.-H.: Centroidal dynamics of a humanoid robot. Autonomous Robots 35(2-3), 161–176 (2013)

    Article  Google Scholar 

  34. Park, H.-W., Wensing, P.M., Kim, S., et al.: Online planning for autonomous running jumps over obstacles in high-speed quadrupeds (2015)

  35. Park, H.-W., Wensing, P.M., Kim, S.: High-speed bounding with the mit cheetah 2: Control design and experiments. Int. J. Robot. Res. 36(2), 167–192 (2017)

    Article  Google Scholar 

  36. Park, J., Khatib, O.: Contact consistent control framework for humanoid robots. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1963–1969. IEEE (2006)

  37. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  38. Pucci, D., Nava, G., Nori, F.: Automatic gain tuning of a momentum based balancing controller for humanoid robots. In: 2016 IEEE-RAS 16Th International Conference on Humanoid Robots, pp 158–164. IEEE, Humanoids (2016)

  39. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped robot. IFAC Proceedings 41(2), 10822–10825 (2008)

    Google Scholar 

  40. Raibert, M.H., Brown, H.B. Jr., Chepponis, M., Koechling, J., Hodgins, J.: Dynamically Stable Legged Locomotion. Tech. rep. Massachusetts Inst Of Tech Cambridge Artificial Intelligence Lab (1989)

  41. Saccon, A., Traversaro, S., Nori, F., Nijmeijer, H.: On centroidal dynamics and integrability of average angular velocity. IEEE Robot. Autom. Lett. 2(2), 943–950 (2017)

    Article  Google Scholar 

  42. Semini, C.: Hyq-Design and Development of a Hydraulically Actuated Quadruped Robot Doctor of Philosophy (Ph D). University of Genoa, Italy (2010)

  43. Sentis, L.: Synthesis and control of whole-body behaviors in humanoid systems. Stanford University, USA (2007)

    Google Scholar 

  44. Sentis, L., Park, J., Khatib, O.: Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Trans. Robot. 26(3), 483–501 (2010)

    Article  Google Scholar 

  45. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer, Berlin (2016)

    Book  Google Scholar 

  46. Ugurlu, B., Havoutis, I., Semini, C., Kayamori, K., Caldwell, D.G., Narikiyo, T.: Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on robocat-1 and hyq. Auton. Robot. 38(4), 415–437 (2015)

    Article  Google Scholar 

  47. Vukobratović, M., Borovac, B., Potkonjak, V.: Zmp: a review of some basic misunderstandings. Int. J. Humanoid Robot. 3(02), 153–175 (2006)

    Article  Google Scholar 

  48. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms (1982)

  49. Wensing, P.M., Orin, D.E.: High-speed humanoid running through control with a 3D-SLIP model. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5134–5140. IEEE (2013)

  50. Wensing, P.M., Orin, D.E.: Improved computation of the humanoid centroidal dynamics and application for whole-body control. Int. J. Humanoid Robot. 13(01), 1550039 (2016)

    Article  Google Scholar 

  51. Wensing, P.M., Wang, A., Seok, S., Otten, D., Lang, J., Kim, S.: Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans. Robot. 33(3), 509–522 (2017)

    Article  Google Scholar 

  52. Wieber, P.-B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp 137–142. IEEE (2006)

  53. Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 3(3), 1560–1567 (2018)

    Article  Google Scholar 

  54. Zeng, X., Zhang, S., Zhang, H., Li, X., Zhou, H., Fu, Y.: Leg trajectory planning for quadruped robots with high-speed trot gait. Appl. Sci. 9(7), 1508 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqian Du.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Appendices

Appendix: A

Extension

Media type

Description

1

Video

A simulation video from

  

Section 5.

Appendix: B

The scaling matrix λi in (20) is derived in the following equation by using the frame setting in Fig. 2,

$$ \boldsymbol{\lambda}_{i} = \left[\begin{array}{lll} \lambda_{z} & 0 & 0\\ 0 & \lambda_{x}\cos^{2}\theta_{i}+\lambda_{y}\sin^{2}\theta_{i} & (\lambda_{x}- \lambda_{y})\cos\theta_{i}\sin\theta_{i} \\ 0 & (\lambda_{x}- \lambda_{y})\cos\theta_{i}\sin\theta_{i} & \lambda_{x}\cos^{2}\theta_{i}+\lambda_{y}\sin^{2}\theta_{i} \end{array},\right] $$
(94)

where we use 𝜃i to denote the leg i HAA joint angle \(\boldsymbol {q}_{HAA_{i}}\) to save space. (λx, λy, λz) are constant scalars.

Appendix: C

The angular inertia at the robot CoM \(\bar {\textbf {I}}_{G}\) is derived as below,

$$ \begin{array}{@{}rcl@{}} \bar{\textbf{I}}_{G} &=& {~}^{b}\boldsymbol{R}^{T}_{G} \bar{\textbf{I}}_{b}{~}^{b}\boldsymbol{R}_{G} -{~}^{b}\boldsymbol{R}^{T}_{G} \tilde{\boldsymbol{p}}_{G}\times m_{b}\tilde{\boldsymbol{p}}_{G}\times {~}^{b}\boldsymbol{R}_{G} + \\ &&\sum\limits_{i=1}^{4} \left( {~}^{b}\boldsymbol{R}^{T}_{G} \bar{\textbf{I}}_{i}{~}^{b}\boldsymbol{R}_{G}- {~}^{b}\boldsymbol{R}^{T}_{G} {~}^{i}\boldsymbol{p}_{G}\times m {~}^{i}\boldsymbol{p}_{G}\times {~}^{b}\boldsymbol{R}_{G} \right) , \end{array} $$
(95)

therefore, we can derive the following relationship by substituting (30b) and (37) into (95),

$$ {~}^{b}\boldsymbol{R}_{G}\bar{\textbf{I}}_{G}{~}^{b}\boldsymbol{R}^{T}_{G}\boldsymbol{\omega}_{b} = \bar{\textbf{I}}_{b}\boldsymbol{\omega}_{b} + \sum\limits_{i=1}^{4} \left[ \bar{\textbf{I}}_{i} \boldsymbol{\omega}_{b} - {~}^{i}\boldsymbol{p}_{G} \times m \boldsymbol{\omega}_{b} \times \tilde{\boldsymbol{p}}_{i} \right]. $$
(96)

Appendix: D

The variables in (69a) are defined as follows,

$$ \begin{array}{@{}rcl@{}} &\begin{aligned} \boldsymbol{B}_{sw_{f}} &=& \left[\begin{array}{lll} \frac{l_{r}}{2} & \frac{w_{r}}{2} & h_{r} \end{array}\right]^{T}, \quad \ \ \ \text{for FL leg}, \\ &=& \left[\begin{array}{lll} \frac{l_{r}}{2} & -\frac{w_{r}}{2} & h_{r} \end{array}\right]^{T}, \quad \text{for FR leg}, \end{aligned} \end{array} $$
(97a)
$$ \begin{array}{@{}rcl@{}} &\begin{aligned} \boldsymbol{B}_{sw_{h}} &=& \left[\begin{array}{lll} -\frac{l_{r}}{2} & \frac{w_{r}}{2} & h_{r} \end{array}\right]^{T} , \quad \text{for HL leg}, \\ &=&- \left[\begin{array}{lll} \frac{l_{r}}{2} & \frac{w_{r}}{2} & h_{r} \end{array}\right]^{T}, \ \ \ \text{for HR leg}, \end{aligned} \end{array} $$
(97b)

where hr denotes the relative position between the base frame origin and each HAA joint origin, in zb direction. lr and wr are referred in Fig. 2.

Appendix: E

The variables in (83) are defined as below,

$$ \begin{array}{@{}rcl@{}} \boldsymbol{J}_{f}&=&\left[\begin{array}{l} \boldsymbol{S}_{x}(\boldsymbol{J}_{p_{sw_{f}}} + \boldsymbol{J}_{p_{st_{h}}})\\ \boldsymbol{S}_{y}(\boldsymbol{J}_{p_{sw_{f}}} + \boldsymbol{J}_{p_{st_{f}}}) \\ \boldsymbol{S}_{z}(\boldsymbol{J}_{p_{sw_{f}}} - \boldsymbol{J}_{p_{sw_{h}}}) \end{array}\right] , \end{array} $$
(98a)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{J}_{h}&=& \left[\begin{array}{l} \boldsymbol{S}_{x}(\boldsymbol{J}_{p_{sw_{h}}} + \boldsymbol{J}_{p_{st_{f}}})\\ \boldsymbol{S}_{y}(\boldsymbol{J}_{p_{sw_{h}}} + \boldsymbol{J}_{p_{st_{h}}}) \\ \boldsymbol{S}_{z}(\boldsymbol{J}_{p_{sw_{h}}} - \boldsymbol{J}_{p_{sw_{f}}}) \end{array}\right] , \end{array} $$
(98b)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{e}_{f} &=&\left[\begin{array}{l} -\boldsymbol{S}_{x}(\tilde{\boldsymbol{p}}_{sw_{f}} - \tilde{\boldsymbol{P}}^{d}_{sw_{f}}) - \boldsymbol{S}_{x}(\tilde{\boldsymbol{p}}_{st_{h}} - \tilde{\boldsymbol{P}}^{d}_{st_{h}})\\ -\boldsymbol{S}_{y}(\tilde{\boldsymbol{p}}_{sw_{f}} - \tilde{\boldsymbol{P}}^{d}_{sw_{f}}) - \boldsymbol{S}_{y}(\tilde{\boldsymbol{p}}_{st_{f}} - \tilde{\boldsymbol{P}}^{d}_{st_{f}})\\ -\boldsymbol{S}_{z}(\tilde{\boldsymbol{p}}_{sw_{f}} + \tilde{\boldsymbol{p}}^{d}_{sw_{h}}) \end{array}\right], \end{array} $$
(98c)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{e}_{h} &=&\left[\begin{array}{l} -\boldsymbol{S}_{x}(\tilde{\boldsymbol{p}}_{sw_{h}} - \tilde{\boldsymbol{P}}^{d}_{sw_{h}}) - \boldsymbol{S}_{x}(\tilde{\boldsymbol{p}}_{st_{f}} - \tilde{\boldsymbol{P}}^{d}_{st_{f}})\\ -\boldsymbol{S}_{y}(\tilde{\boldsymbol{p}}_{sw_{h}} - \tilde{\boldsymbol{P}}^{d}_{sw_{h}}) - \boldsymbol{S}_{y}(\tilde{\boldsymbol{p}}_{st_{h}} - \tilde{\boldsymbol{P}}^{d}_{st_{h}})\\ -\boldsymbol{S}_{z}(\tilde{\boldsymbol{p}}_{sw_{h}} + \tilde{\boldsymbol{p}}^{d}_{sw_{f}}) \end{array}\right], \end{array} $$
(98d)

where swf, swh, stf and sth represent the swing-front, swing-hind, stance-front and stance-hind leg index, and \(\boldsymbol {J}_{p_{i}}\) is defined in (81), \(\tilde {\boldsymbol {P}}^{d}_{i}\) is defined in (82).

Appendix: F

The dynamics properties for the centroidal-motion tracking task are achieved using (86) as follows.

$$ \begin{array}{@{}rcl@{}} \boldsymbol{{\varLambda}}_{G|c|m}&=&(\textbf{\textit{J}}_{G|c|m}\textbf{\textit{M}}^{-1}\textbf{\textit{J}}^{T}_{G|c|m})^{-1}, \end{array} $$
(99a)
$$ \begin{array}{@{}rcl@{}} \bar{\boldsymbol{J}}^{T}_{G|c|m}&=&\boldsymbol{{\varLambda}}_{G|c|m}\textbf{\textit{J}}_{G|c|m}\textbf{\textit{M}}^{-1}, \end{array} $$
(99b)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\mu}_{G|c|m}&=&\boldsymbol{{\varLambda}}_{G|c|m}\boldsymbol{J}_{G}\boldsymbol{M}^{-1}\boldsymbol{N}^{T}_{c|m}\textbf{\textit{C}} +\\ &&\boldsymbol{{\varLambda}}_{G|c|m}\left( \boldsymbol{J}_{G}\bar{\boldsymbol{J}}_{c|m}\dot{\boldsymbol{J}}_{c}\dot{\boldsymbol{q}}-\dot{\boldsymbol{J}}_{G}\dot{\boldsymbol{q}}\right), \end{array} $$
(99c)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\rho}_{G|c|m}&=&\boldsymbol{{\varLambda}}_{G|c|m}\boldsymbol{J}_{G}\boldsymbol{M}^{-1}\boldsymbol{N}^{T}_{c|m}\textbf{\textit{G}}, \end{array} $$
(99d)

where it is noticed that the subscript G can be replaced by b if tracking the floating-base motion is the first task. Similarly, the dynamic properties for the swing-leg motion tracking task are derived as below,

$$ \begin{array}{@{}rcl@{}} \boldsymbol{{\varLambda}}_{sw|G|c|m}&=&(\textbf{\textit{J}}_{sw|G|c|m}\textbf{\textit{M}}^{-1}\textbf{\textit{J}}^{T}_{sw|G|c|m})^{-1}, \end{array} $$
(100a)
$$ \begin{array}{@{}rcl@{}} \bar{\boldsymbol{J}}^{T}_{sw|G|c|m}&=&\boldsymbol{{\varLambda}}_{sw|G|c|m}\textbf{\textit{J}}_{sw|G|c|m}\textbf{\textit{M}}^{-1}, \end{array} $$
(100b)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\mu}_{sw|G|c|m}&=&\boldsymbol{{\varLambda}}_{sw|G|c|m}\boldsymbol{J}_{sw}\boldsymbol{M}^{-1}\boldsymbol{N}^{T}_{c|m}\textbf{\textit{C}}+ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&\boldsymbol{{\varLambda}}_{sw|G|c|m}\left( \boldsymbol{J}_{sw}\bar{\boldsymbol{J}}_{c|m}\dot{\boldsymbol{J}}_{c}\dot{\boldsymbol{q}}-\dot{\boldsymbol{J}}_{sw}\dot{\boldsymbol{q}}\right), \end{array} $$
(100c)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{\rho}_{sw|G|c|m}&=&\boldsymbol{{\varLambda}}_{sw|G|c}\boldsymbol{J}_{w}\boldsymbol{M}^{-1}\boldsymbol{N}^{T}_{c|m}\textbf{\textit{G}}. \end{array} $$
(100d)

The general matrices \(\boldsymbol {A}_{x_{i}}\) and \(\boldsymbol {B}_{x_{i}}\) are derived as follows,

$$ \begin{array}{@{}rcl@{}} \boldsymbol{A}_{x_{i}} &=& \textbf{\textit{S}}\bar{\boldsymbol{J}}_{i|pre(i)}\boldsymbol{{\varLambda}}^{-1}_{i|pre(i)}, \end{array} $$
(101a)
$$ \begin{array}{@{}rcl@{}} \boldsymbol{B}_{x_{i}} &= &\boldsymbol{J}_{i|pre(i)}\boldsymbol{M}^{-1}\left( -\boldsymbol{\Gamma} + \sum\limits_{t=1}^{i-1}\boldsymbol{S}^{T}\boldsymbol{\tau}_{t}\right) - \\ &&\boldsymbol{{\varLambda}}^{-1}_{i|pre(i)} \left( \boldsymbol{\mu}_{i|pre(i)} + \boldsymbol{\rho}_{i|pre(i)}+ \boldsymbol{T}_{i|pre(i)} \right) , \end{array} $$
(101b)

where Ti|pre(i) combines all operational space forces of the task levels higher than i, as follows,

$$ \boldsymbol{T}_{i|pre(i)} = \boldsymbol{{\varLambda}}_{i|pre(i)}\boldsymbol{J}_{i}\boldsymbol{M}^{-1}\sum\limits_{t=1}^{i-1} \boldsymbol{J}^{T}_{t|pre(t)}\boldsymbol{F}_{t|pre(t)}, $$
(102)

where T1|pre(1) = 0, and Ft|pre(t) is the operational space force for task i and it can be achieved by multiplying \(\bar {\boldsymbol {J}}^{T}_{t|pre(t)}\) at the right side of the dynamics model in (87) as below,

$$ \boldsymbol{F}_{t|pre(t)} = \bar{\boldsymbol{J}}^{T}_{t|pre(t)}\left( - \boldsymbol{\Gamma} + \sum\limits_{j=1}^{t}\boldsymbol{S}^{T}\boldsymbol{\tau}_{j}\right), $$
(103)

where we use property \(\bar {\boldsymbol {J}}^{T}_{t|pre(t)}\boldsymbol {N}_{pre(j)} = \boldsymbol {0}\) for j > t. In this way, Ti|pre(i) and Ft|pre(t) both depend on the prioritized impedance controller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Fnadi, M., Moullet, E. et al. Leg Centroidal Dynamics Based New Locomotion Principle of a Quadruped Robot with On-line Legged Motion Generation. J Intell Robot Syst 103, 70 (2021). https://doi.org/10.1007/s10846-021-01503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01503-1

Keywords

Navigation