Skip to main content

Advertisement

Log in

Chromosome positioning and male infertility: it comes with the territory

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The production of functional spermatozoa through spermatogenesis requires a spatially and temporally highly regulated gene expression pattern, which in case of alterations, leads to male infertility. Changes of gene expression by chromosome anomalies, gene variants, and epigenetic alterations have been described as the main genetic causes of male infertility. Recent molecular and cytogenetic approaches have revealed that higher order chromosome positioning is essential for basic genome functions, including gene expression. This review addresses this issue by exposing well-founded evidences which support that alterations on the chromosome topology in spermatogenetic cells leads to defective sperm function and could be considered as an additional genetic cause of male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434:583–9. https://doi.org/10.1038/nature03368.

    Article  CAS  PubMed  Google Scholar 

  2. De Mateo S, Sassone-corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol. 2014;29:84–92. https://doi.org/10.1016/j.semcdb.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71:319–30. https://doi.org/10.1095/biolreprod.103.026880.

    Article  CAS  PubMed  Google Scholar 

  4. Margolin G, Khil PP, Kim J, Bellani MA, Camerini-Otero RD. Integrated transcriptome analysis of mouse spermatogenesis. BMC Genomics. 2014;15:39. https://doi.org/10.1186/1471-2164-15-39.

    Article  PubMed  PubMed Central  Google Scholar 

  5. da Cruz , Rodríguez-Casuriaga R, Santiñaque FF, Farías J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 2016;17:294.

  6. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome - integrating genetics, neuropsychology and endocrinology. Endocr Rev. 2018;39:389–423. https://doi.org/10.1210/er.2017-00212.

    Article  PubMed  Google Scholar 

  7. Song SH, Chiba K, Ramasamy R, Lamb DJ. Recent advances in the genetics of testicular failure. Asian J Androl. 2016;18:350–5. https://doi.org/10.4103/1008-682X.178857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod BioMed Online. 2018;36:327–39. https://doi.org/10.1016/j.rbmo.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  9. Smirnova NA, Romanienko PJ, Khil PP, Camerini-Otero RD. Gene expression profiles of Spo11−/− mouse testes with spermatocytes arrested in meiotic prophase I. Reproduction. 2006;132:67–77. https://doi.org/10.1530/rep.1.00997.

    Article  CAS  PubMed  Google Scholar 

  10. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26:2558–69. https://doi.org/10.1093/humrep/der192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, et al. Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis. Reprod BioM Online. 2016;33:709–19. https://doi.org/10.1016/j.rbmo.2016.09.001.

    Article  CAS  Google Scholar 

  12. Finch KA, Fonseka KGL, Abogrein A, Ioannou D, Handyside AH, Thornhill AR, et al. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod. 2008;23:1263–70. https://doi.org/10.1093/humrep/den112.

    Article  CAS  PubMed  Google Scholar 

  13. Olszewska M, Wiland E, Kurpisz M. Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosom Res. 2008;16:875–90. https://doi.org/10.1007/s10577-008-1246-2.

    Article  CAS  Google Scholar 

  14. Wiland E, Zegało M, Kurpisz M. Interindividual differences and alterations in the topology of chromosomes in human sperm nuclei of fertile donors and carriers of reciprocal translocations. Chromosom Res. 2008;16:291–305. https://doi.org/10.1007/s10577-007-1194-2.

    Article  CAS  Google Scholar 

  15. Alladin N, Moskovtsev SI, Russell H, Kenigsberg S, Lulat AG, Librach CL. The three-dimensional image analysis of the chromocenter in motile and immotile human sperm. Syst Biol Reprod Med. 2013;59:146–52. https://doi.org/10.3109/19396368.2013.772679.

    Article  CAS  PubMed  Google Scholar 

  16. Solé M, Blanco J, Valero O, Vergés L, Vidal F, Sarrate Z. Altered bivalent positioning in metaphase I human spermatocytes from Robertsonian translocation carriers. J Assist Reprod Genet. 2017;34:131–8. https://doi.org/10.1007/s10815-016-0809-y.

    Article  PubMed  Google Scholar 

  17. Mayans C, Blanco J, Valero O, Vidal F, Sarrate Z. Unpaired sex chromosomes in metaphase I human spermatocytes locally modify autosomal bivalents positioning. Asian J Andrology. 2018;0:0. https://doi.org/10.4103/aja.aja_45_18.

    Article  Google Scholar 

  18. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889. https://doi.org/10.1101/cshperspect.a003889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rabl C. Über Zelltheilung. Morph Jb. 1885;10:214–330.

    Google Scholar 

  20. Boveri T. Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch Zellforsch. 1909;3:181–268.

    Google Scholar 

  21. Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, et al. Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet. 1982;60:46–56. https://doi.org/10.1007/BF00281263.

    Article  CAS  PubMed  Google Scholar 

  22. van de Werken HJ, de Vree PJ, Splinter E, Holwerda SJ, Klous P, de Wit E, de Laat W. 4C technology: protocols and data analysis. Methods Enzymol 2012;513:89–112.

  23. Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, et al. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. BioEssays. 2012;34:412–26.

    Article  Google Scholar 

  24. Paz N, Zabala A, Royo F, García-Orad Á, Zugaza JL, Parada LA. Combined fluorescent-chromogenic in situ hybridization for identification and laser microdissection of interphase chromosomes. PLoS One. 2013;8(4):e60238. https://doi.org/10.1371/journal.pone.0060238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawyer IA, Shevtsov SP, Dundr M. Spectral imaging to visualize higher-order genomic organization. Nucleus. 2016;7:325–38. https://doi.org/10.1080/19491034.2016.1187344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cremer M, Schmid VJ, Kraus F, Markaki Y, Hellmann I, Maiser A, et al. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin. 2017;10(1):39.

    Article  Google Scholar 

  27. Bridger JM, Boyle S, Kill IR, Bickmore WA. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol. 2000;10:149–52. https://doi.org/10.1016/S0960-9822(00)00312-2.

    Article  CAS  PubMed  Google Scholar 

  28. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet. 2001;10:211–9. https://doi.org/10.1093/hmg/10.3.211.

    Article  CAS  PubMed  Google Scholar 

  29. Lukásová E, Kozubek S, Kozubek M, Falk M, Amrichová J. The 3D structure of human chromosomes in cell nuclei. Chromosom Res. 2002;10:535–48. https://doi.org/10.1023/A:1020958517788.

    Article  Google Scholar 

  30. Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T. Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res. 2002;504:37–45.

    Article  CAS  Google Scholar 

  31. Cremer M, Küpper K, Wagler B, Wizelman L, von Hase J, Weiland Y, et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol. 2003;162:809–20. https://doi.org/10.1083/jcb.200304096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neusser M, Schubel V, Koch A, Cremer T, Müller S. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma. 2007;116:307–20. https://doi.org/10.1007/s00412-007-0099-3.

    Article  PubMed  Google Scholar 

  33. Meaburn KJ, Misteli T. Cell biology: chromo- some territories. Nature. 2007;445:379–781. https://doi.org/10.1038/445379a.

    Article  CAS  PubMed  Google Scholar 

  34. Ioannou D, Griffin DK. Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res. 2011;133:269–79. https://doi.org/10.1159/000322060.

    Article  CAS  PubMed  Google Scholar 

  35. Sun HB, Shen J, Yokota H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J. 2000;79:184–90. https://doi.org/10.1016/S0006-3495(00)76282-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005;3:e157. https://doi.org/10.1371/journal.pbio.0030157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wollenberg C, Kiefaber MP, Zang KD. Quantitative studies on the arrangement of human metaphase chromosomes. Hum Genet. 1982;60:239–48. https://doi.org/10.1007/BF00303011.

    Article  CAS  PubMed  Google Scholar 

  38. Mosgoller W, Leitch AR, Brown JKM, Heslop-Harrison JS. Chromosome arrangements in human fibroblasts at mitosis. Hum Genet. 1991;88:27–33. https://doi.org/10.1007/BF00204924.

    Article  CAS  PubMed  Google Scholar 

  39. Leitch AR, Brown JKM, Mosgoller W, Schwarzacher T, Heslop-Harrison JS. The spatial localization of homologous chromosomes in human fibroblasts at mitosis. Hum Genet. 1994;93:275–80. https://doi.org/10.1007/BF00212022.

    Article  CAS  PubMed  Google Scholar 

  40. Federico C, Cantarella CD, Di Mare P, Tosi S, Saccone S. The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma. 2008;117:399–410. https://doi.org/10.1007/s00412-008-0160-x.

    Article  CAS  PubMed  Google Scholar 

  41. Hepperger C, Mannes A, Merz J, Peters J, Dietzel S. Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma. 2008;117:535–51. https://doi.org/10.1007/s00412-008-0168-2.

    Article  PubMed  Google Scholar 

  42. Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, et al. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma. 2007;116:285–306. https://doi.org/10.1007/s00412-007-0098-4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takizawa T, Meaburn KJ, Misteli T. The meaning of gene positioning. Cell. 2008;135:9–13. https://doi.org/10.1016/j.cell.2008.09.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crabbe L, Cesare AJ, Kasuboski JM, Fitzpatrick JA, Karlseder J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep. 2012;2:1521–9. https://doi.org/10.1016/j.celrep.2012.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burla R, La Torre M, Saggio I. Mammalian telomeres and their partnership with lamins. Nucleus. 2016;7:187–202. https://doi.org/10.1080/19491034.2016.1179409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell. 2015;163:134–47. https://doi.org/10.1016/j.cell.2015.08.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev. 2008;22:627–39. https://doi.org/10.1101/gad.1632708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pliss A, Fritz AJ, Stojkovic B, Ding H, Mukherjee L, Bhattacharya S, et al. Non-random patterns in the distribution of NOR-bearing chromosome territories in human fibroblasts: a network model of interactions. J Cell Physiol. 2015;230:427–39. https://doi.org/10.1002/jcp.24726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Németh A, Grummt I. Dynamic regulation of nucleolar architecture. Curr Opin Cell Biol. 2018;52:105–11. https://doi.org/10.1016/j.ceb.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  50. Cavalli G. Chromosome kissing. Curr Opin Genet Dev. 2007;17:443–50. https://doi.org/10.1016/j.gde.2007.08.013.

    Article  CAS  PubMed  Google Scholar 

  51. Hübner MR, Eckersley-Maslin MA, Spector DL. Chromatin organization and transcriptional regulation. Curr Opin Genet Dev. 2013;23:89–95. https://doi.org/10.1016/j.gde.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  52. Branco MR, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 2006;4:e138. https://doi.org/10.1371/journal.pbio.0040138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nguyen HQ, Bosco G. Gene positioning effects on expression in eukaryotes. Annu Rev Genet. 2015;49:627–46. https://doi.org/10.1146/annurev-genet-112414-055008.

    Article  CAS  PubMed  Google Scholar 

  54. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci. 2000;113:1565–76.

    CAS  PubMed  Google Scholar 

  55. Williams RRE, Broad S, Sheer D, Ragoussis J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res. 2002;272:163–75. https://doi.org/10.1006/excr.2001.5400.

    Article  CAS  PubMed  Google Scholar 

  56. Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST. A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosom Res. 2003;11:513–25. https://doi.org/10.1023/A:1024939130361.

    Article  CAS  Google Scholar 

  57. Galiová G, Bártová E, Kozubek S. Nuclear topography of β-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells. Blood Cells Mol Dis. 2004;33:4–14. https://doi.org/10.1016/j.bcmd.2004.03.006.

    Article  CAS  PubMed  Google Scholar 

  58. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol. 2002;157:579–89. https://doi.org/10.1083/jcb.200111071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800. https://doi.org/10.1016/j.cell.2007.01.028.

    Article  CAS  PubMed  Google Scholar 

  60. Geyer PK, Vitalini MW, Wallrath LL. Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol. 2011;23:354–9. https://doi.org/10.1016/j.ceb.2011.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Solinhac R, Mompart F, Martin P, Robelin D, Pinton P, Iannuccelli E, et al. Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma. 2011;120:501–20. https://doi.org/10.1007/s00412-011-0328-7.

    Article  CAS  PubMed  Google Scholar 

  62. Roy SS, Mukherjee AK, Chowdhury S. Insights about genome function from spatial organization of the genome. Hum Genomics. 2018;12:8.

    Article  Google Scholar 

  63. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80. https://doi.org/10.1038/nature11082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Verschure PJ, van Der Kraan I, Manders EM, van Driel R. Spatial relationship between transcription sites and chromosome territories. J Cell Biol. 1999;147:13–24. https://doi.org/10.1083/jcb.147.1.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bornfleth H, Edelmann P, Zink D, Cremer T, Cremer C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys J. 1999;77:2871–86. https://doi.org/10.1016/S0006-3495(99)77119-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iborra FJ, Pombo A, Jackson DA, Cook PR. Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci. 1996:1427–36.

  67. Parada LA, McQueen PG, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5:R44. https://doi.org/10.1186/gb-2004-5-7-r44.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zeitz MJ, Mukherjee L, Bhattacharya S, Xu J, Berezney R. A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts. J Cell Physiol. 2009;221:120–9. https://doi.org/10.1002/jcp.21842.

    Article  CAS  PubMed  Google Scholar 

  69. Berrios S. Nuclear architecture of mouse spermatocytes: chromosome topology, heterochromatin, and nucleolus. Cytogenet Genome Res. 2017;151:61–71. https://doi.org/10.1159/000460811.

    Article  CAS  PubMed  Google Scholar 

  70. Berrios S, Fernández-Donoso R, Pincheira J, Page J, Manterola M, Cerda MC. Number and nuclear localisation of nucleoli in mammalian spermatocytes. Genetica. 2004;121:219–28. https://doi.org/10.1023/B:GENE.0000039843.78522.99.

    Article  PubMed  Google Scholar 

  71. Berrios S, Fernández-Donoso R. Nuclear architecture of human pachytene spermatocytes: quantitative analysis of associations between nucleolar and XY bivalents. Hum Genet. 1990;86:103–16. https://doi.org/10.1007/BF00197690.

    Article  CAS  PubMed  Google Scholar 

  72. Metzler-Guillemain C, Mignon C, Depetris D, Guichaoua MR, Mattei MG. Bivalent 15 regularly associates with the sex vesicle in normal male meiosis. Chromosom Res. 1999;7:369–78. https://doi.org/10.1023/A:1009268014387.

    Article  CAS  Google Scholar 

  73. Codina-Pascual M, Navarro J, Oliver-Bonet M, Kraus J, Speicher MR, Arango O, et al. Behaviour of human heterochromatic regions during the synapsis of homologous chromosomes. Hum Reprod. 2006;21:1490–7. https://doi.org/10.1093/humrep/del028.

    Article  CAS  PubMed  Google Scholar 

  74. Sarrate Z, Blanco J, Vidal F. Acrocentric bivalents positioned preferentially nearby to the XY pair in metaphase I human spermatocytes. Fertil Steril. 2012;98:1241–5. https://doi.org/10.1016/j.fertnstert.2012.07.1110.

    Article  PubMed  Google Scholar 

  75. Burk RD, Szabo P, O’Brien S, Nash WG, Yu L, Smith KD. Organization and chromosomal specificity of autosomal homologs of human Y chromosome repeated DNA. Chromosoma. 1985;92:225–33. https://doi.org/10.1007/BF00348698.

    Article  CAS  PubMed  Google Scholar 

  76. Gardner RJ, Sutherland GR. Chromosome abnormalities and genetic counseling. 3rd ed. New York: Oxford University Press; 2004. https://doi.org/10.1016/S1036-7314(04)80018-3.

    Book  Google Scholar 

  77. Smith A, Fraser IS, Elliott G. An infertile male with balanced Y;19 translocation. Review of Y;autosome translocations. Ann Genet. 1979;22:189–94.

    CAS  PubMed  Google Scholar 

  78. Vergés L, Blanco J, Valero O, Vidal F, Sarrate Z. Chromosome size, morphology, and gene density determine bivalent positioning in metaphase I human spermatocytes. Fertil Steril. 2014;101:818–24. https://doi.org/10.1016/j.fertnstert.2013.11.013.

    Article  PubMed  Google Scholar 

  79. Hazzouri M, Rousseaux S, Mongelard F, Usson Y, Pelletier R, Faure AK. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev. 2000;55:307–15. https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<307::AID-MRD9>3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  80. Zalenskaya IA, Zalensky AO. Non-random positioning of chromosomes in human sperm nuclei. Chromosom Res. 2004;12:163–73. https://doi.org/10.1023/B:CHRO.0000013166.04629.97.

    Article  CAS  Google Scholar 

  81. Solov’eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosom Res. 2004;12:817–23. https://doi.org/10.1007/s10577-005-5513-1.

    Article  CAS  Google Scholar 

  82. Mudrak OS, Tomilin N, Zalensky AO. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci. 2005;118:4541–50. https://doi.org/10.1242/jcs.02581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, et al. Chromosome distribution in human sperm - a 3D multicolor banding-study. Mol Cytogenet. 2008;1:25. https://doi.org/10.1186/1755-8166-1-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ioannou D, Meershoek EJ, Christopikou D, Ellis M, Thornhill AR, Griffin DK. Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosom Res. 2011;19:741–53. https://doi.org/10.1007/s10577-011-9238-z.

    Article  CAS  Google Scholar 

  85. Millan NM, Lau P, Hann M, Ioannou D, Hoffman D, Barrionuevo M, et al. Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosom Res. 2012;20:875–87. https://doi.org/10.1007/s10577-012-9323-y.

    Article  CAS  Google Scholar 

  86. Mudrak OS, Nazarov IB, Jones EL, Zalensky AO. Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement. PLoS One. 2012;7:e52944. https://doi.org/10.1371/journal.pone.0052944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ioannou D, Millan NM, Jordan E, Tempest HG. A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions. Sci Rep. 2017;7:41585. https://doi.org/10.1038/srep41585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Greaves IK, Rens W, Ferguson-Smith MA, Griffin D, Marshall Graves JA. Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosom Res. 2003;11:503–12. https://doi.org/10.1023/A:1024982929452.

    Article  CAS  Google Scholar 

  89. Foster HA, Abeydeera LR, Griffin DK, Bridger JM. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci. 2005;118:1811–20. https://doi.org/10.1242/jcs.02301.

    Article  CAS  PubMed  Google Scholar 

  90. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhórn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103:577–90. https://doi.org/10.1007/BF00357684.

    Article  CAS  PubMed  Google Scholar 

  91. Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans. 2007;35:609–11. https://doi.org/10.1042/BST0350609.

    Article  CAS  PubMed  Google Scholar 

  92. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schröck E, et al. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol. 1993;58:777–92. https://doi.org/10.1101/SQB.1993.058.01.085.

    Article  CAS  PubMed  Google Scholar 

  93. Ni K, Spiess A-N, Schuppe H-C, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4:789–99. https://doi.org/10.1111/andr.12216.

    Article  CAS  PubMed  Google Scholar 

  94. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod BioMed Online. 2007;14:734–45. https://doi.org/10.1016/S1472-6483(10)60677-3.

    Article  CAS  PubMed  Google Scholar 

  95. Ioannou D, Tempest HG. Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med. 2018;2:1–17.

    Article  Google Scholar 

  96. Hammadeh ME, Al-Hasani S, Stieber M, Rosenbaum P, Küpker D, Diedrich K, et al. The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod. 1996;11:2468–71. https://doi.org/10.1093/oxfordjournals.humrep.a019139.

    Article  CAS  PubMed  Google Scholar 

  97. Depa-Martynow M, Kempisty B, Jagodziński PP, Pawelczyk L, Jedrzejczak P. Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol. 2012;12:57–72. https://doi.org/10.1016/S1642-431X(12)60077-1.

    Article  PubMed  Google Scholar 

  98. Nasr-Esfahani MH, Razavi S, Mozdarani H, Mardani M, Azvagi H. Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia. 2004;36:95–100. https://doi.org/10.1111/j.1439-0272.2004.00612.x.

    Article  CAS  PubMed  Google Scholar 

  99. Nasr-Esfahani MH, Salehi M, Razavi S, Anjomshoa M, Rozbahani S, Moulavi F, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod BioMed Online. 2005;11:198–205.

    Article  CAS  Google Scholar 

  100. Iranpour FG. Impact of sperm chromatin evaluation on fertilization rate in intracytoplasmic sperm injection. Adv Biomed Res. 2014;3:229. https://doi.org/10.4103/2277-9175.145719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marchiani S, Tamburrino L, Benini F, Fanfani L, Dolce R, Rastrelli G, et al. Chromatin protamination and Catsper expression in spermatozoa predict clinical outcomes after assisted reproduction programs. Sci Rep. 2017;7:15122. https://doi.org/10.1038/s41598-017-15351-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cremer T, Küpper K, Dietzel S, Fakan S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell. 2004;96:555–67.

    Article  CAS  Google Scholar 

  103. Terada Y, Luetjens CM, Sutovsky P, Schatten G. Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril. 2000;74:454–60. https://doi.org/10.1016/S0015-0282(00)00671-3.

    Article  CAS  PubMed  Google Scholar 

  104. Van Steirteghem A, Bonduelle M, Devroey P, Liebaers I. Follow-up of children born after ICSI. Hum Reprod Update 2002;8:111–116, DOI: https://doi.org/10.1093/humupd/8.2.111.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are members of a consolidated research group (2017 SGR-503) recognized by the Generalitat de Catalunya (Spain). This manuscript has been proofread by Proof-Reading-Service.org.

Funding

This study was supported by the Project CF-180034 (Universitat Autònoma de Barcelona, Spain) and Project SAF2016-77165-P (Ministerio de Economía y Competitividad, Spain). Mireia Solé is recipient of a grant from UAB (PIF/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaida Sarrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarrate, Z., Solé, M., Vidal, F. et al. Chromosome positioning and male infertility: it comes with the territory. J Assist Reprod Genet 35, 1929–1938 (2018). https://doi.org/10.1007/s10815-018-1313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1313-3

Keywords

Navigation