Skip to main content
Log in

Spectroscopic and Computational Analysis of Protein Binding on Copper Nanoparticles: an Insight into Ligand and Nanocarrier Interaction

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of copper nanoparticles (CuNP) with bovine serum albumin (BSA) under physiological conditions was studied using spectroscopic techniques. The analysis of the adsorption of BSA by CuNP indicated that it followed the Langmuir adsorption isotherm and a pseudo second-order expression. The quenching of BSA intrinsic fluorescence was observed upon its binding to CuNP. The calculation of a modified Stern–Volmer constant revealed that the binding of CuNP to BSA complies with the static mechanism. The binding constant, the binding site, and the thermodynamic parameters of the BSA–CuNP interaction were evaluated using fluorescence quenching data at 298, 310, and 333 K. The binding constant decreased with increase in temperature, and the binding of BSA to CuNP involved one single site. Negative free energy (ΔG), positive enthalpy (ΔH), and entropy change (ΔS) calculations suggested that the binding of BSA to CuNP was spontaneous and hydrophobic forces played a key role in stabilizing the complex. An evaluation of the Hill coefficient indicated negative cooperativity. Minor conformational changes were observed in the circular dichroism spectra when BSA was bound to CuNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dominguez-Medina, S. McDonough, P. Swanglap, C. F. Landes, and S. Link, Langmuir, 28, 9131−9139 (2012).

    Article  Google Scholar 

  2. S. Chakraborty, P. Joshi, V. Shanker, Z. A. Ansari, S. P. Singh, and P. Chakrabarti, Langmuir, 27, 7722–7731 (2011).

    Article  Google Scholar 

  3. V. Ducal, P. Saulnier, J. Richard, and F. Boury, Colloids Surf. B, 41, 95–102 (2005).

    Article  Google Scholar 

  4. M. A. Dobrovolskaia, A. K. Patri, J. W. Zheng, J. D. Clogston, N. Ayub, P. B. Aggarwal, B. W. Neun, J. B. Hall, and S. E. McNeil, Nanomedicine, 5, 106–117 (2009).

    Google Scholar 

  5. P. Aggarval, J. B. Hall, C. B. McLeland, M. A. Dobrovolskaia, and S. E. McNeil, Adv. Drug Deliv. Rev., 61, 428–437 (2009).

    Article  Google Scholar 

  6. A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, L. Pan, and Z. Zhang, J. Mater. Sci. Mater. Electron., 21, 1262–1269 (2010).

    Article  Google Scholar 

  7. S. Chandra, A. Kumar, and P. K. Tomar, J. Saudi Chem. Soc., 18, 149–153 (2014).

    Article  Google Scholar 

  8. B. X. Huang and Y. Kim, J. Am. Soc. Mass Spectrom., 15, 1237–1247 (2004).

    Article  Google Scholar 

  9. P. Joshi, S. Chakraborty, V. Dey Shanker, Z. A. Ansari, S. P. Singh, and P. Chakrabarti, J. Colloid Interface Sci., 355, 402–409 (2011).

    Article  Google Scholar 

  10. P. Li, X. Hu, G. Song, P. K. Chu, and Z. Xu, J. Appl. Polym. Sci., 125, 864–869 (2012).

    Google Scholar 

  11. G. Mandal, M. Bardhan, and T. Ganguly, Colloids Surf. B, 81, 178–184 (2010).

    Article  Google Scholar 

  12. S. R. Saptarshi, A. Dusch, and A. L. Lopata, J. Nanobiotechnol., 11, 26 (2013).

    Article  Google Scholar 

  13. S. M. Zayed, A. M. Alshimy, and A. M. Fahmy, Int. J. Biomater. (2014); doi: 10.1155/2014/750398.

    Google Scholar 

  14. L. Y. Ing, N. Zin, A. Sarwar, and H. Katas, Int. J. Biomater. (2012); doi: 10.1155/2012/632698.

    Google Scholar 

  15. K. Vasanth Kumar, J. Hazard Mater. B, 137, 1538–1544 (2006).

    Article  Google Scholar 

  16. M. M. S. Saif, N. Siva Kumar, and M. N. V. Prasad, Colloid. Surf. B, 94, 73–79 (2012).

    Article  Google Scholar 

  17. A. Ravindran, A. Singh, A. M. Raichurb, N. Chandrasekaran, and A. Mukherjee, Colloid. Surf. B, 76, 32–37 (2010).

    Article  Google Scholar 

  18. T. Rao, G. Ruiz-Gomez, T. A. Hill, H. N. Hoang, D. P. Fairlie, and J. M. Mason, PLoS ONE, 8, e59415 (2013); doi: 10.1371/journal.pone.0059415.

    Article  ADS  Google Scholar 

  19. Y. H. Chen, J. T. Yang, and K. H. Chau, Biochemistry, 13, 3350–3359 (1974).

    Article  Google Scholar 

  20. A. Kondo and F. K. M. Higashitani, Biotechnol. Bioeng., 40, 889–894 (1992).

    Article  Google Scholar 

  21. M. Ahamed, H. A. Alhadlaq, M. A. M. Khan, P. Karuppiah, and N. A. Al-Dhab, J. Nano Mater. (2014); doi: 10.1155/2014/637858.

    Google Scholar 

  22. K. Rahman, A. Khan, N. M. Muhammad, J. Jo, and C. H. Choi, J. Micromech. Microeng., 22, 065012 (2012).

    Article  ADS  Google Scholar 

  23. T. M. D. Dang E. Le, T. T. T. Fribourg-Blanc, and M. C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol., 2, 015009 (2011).

    Article  ADS  Google Scholar 

  24. M. P. Pant, J. Mariam, A. Joshi, and P. M. Dongre, J. Radiat. Res. Appl. Sci., 7, 399–405 (2014).

    Article  Google Scholar 

  25. M. A. Jhonsi, A. Kathiravan, and R. Renganathan, Colloids Surf. B, 72, 167–172 (2009).

    Article  Google Scholar 

  26. S. Kamran, M. Asadi, and G. Absalan, Microchim. Acta, 108, 41–48 (2013).

    Article  Google Scholar 

  27. D. Agudelo, P. Bourassa, J. Bruneau, G. Bérubé, E. Asselin, H. Ali, and T. Riah, PLoS ONE, 7, e43814 (2012); doi: 10.1371/journal.pone.0043814.

    Article  ADS  Google Scholar 

  28. Q. Yang, J. Liang, and H. Han, J. Phys. Chem. B, 113, 10454–10458 (2009).

    Article  Google Scholar 

  29. S. X. Juan, L. Dan, X. Jing, W. Shawn, W. U. Z. Qiang, and C. H. Hong, Chin. Sci. Bull., 57, 1109–1115 (2012).

    Article  Google Scholar 

  30. L. Shang, Y. Z. Wang, J. Jiang, and S. Dong, Langmuir, 23, 2714–2721 (2007).

    Article  Google Scholar 

  31. C. Hebia, L. Bekale, P. Chanphai, J. Agbebavi, and H. A. Tajmir-Riahi, J. Photochem. Photobiol. B, 130, 254–259 (2014).

    Article  Google Scholar 

  32. J. Mariam, P. M. Dongre, and D. C. Kothari, J. Fluoresc., 21, 93–99 (2011).

    Article  Google Scholar 

  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Plenum Press, New York (1999).

    Book  Google Scholar 

  34. M. R. Eftink and C. A. Ghiron, Biochemistry, 15, 672–680 (1976).

    Article  Google Scholar 

  35. Y. Wang, Q. Jiang, L. R. Liu, and Q. Zhang, Polymer, 48, 4135–4142 (2007).

    Article  Google Scholar 

  36. S. Bi, L. Yan, B. Wang, J. Bian, and Y. Sun, J. Lumin., 131, 866–873 (2011).

    Article  Google Scholar 

  37. S. Chatterjee and T. K. Mukherjee, Phys. Chem. Chem. Phys., 16, 8400 (2014).

    Article  Google Scholar 

  38. M. Bardhan, G. Mandal, and T. Ganguly. J. Appl. Phys., 106, 034701 (2009).

    Article  ADS  Google Scholar 

  39. Y. Z. Zhang, B. Zhou, Y. X. Liu, C. X. Zhou, X. L. Ding, and Y. Liu, J. Fluoresc., 18, 109–118 (2008).

    Article  Google Scholar 

  40. P. B. Kandagal, S. Ashoka, J. Seetharamappa, S. M. T. Shaikh, Y. Jadegoud, and O. B. Ijare, J. Pharm. Biomed Anal., 41, 393–399 (2006).

    Article  Google Scholar 

  41. S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, and J. F. Douglas, ACS Nano, 4, No. 1, 365–379 (2010).

    Article  Google Scholar 

  42. S. Zolghadri, A. A. Saboury, A. Golestani, A. S. Divsalar, S. Rezaei-Zarchi, and A. A. Moosavi-Movahedi, J. Nanopart. Res., 11, 1751–1758 (2009).

    Article  Google Scholar 

  43. N. Wangoo, C. R. Suri, and G. Shekhawat, Appl. Phys. Lett., 92, 133104 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Latheef.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 5, p. 840, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latheef, S.A.A., Chakravarthy, G., Mallaiah, D. et al. Spectroscopic and Computational Analysis of Protein Binding on Copper Nanoparticles: an Insight into Ligand and Nanocarrier Interaction. J Appl Spectrosc 83, 896–902 (2016). https://doi.org/10.1007/s10812-016-0381-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0381-3

Keywords

Navigation