Skip to main content
Log in

Vibrational and Electronic Spectra of Silole: A Theoretical PT2-DFT Anharmonic and TD-DFT Study

  • English-Language Articles
  • Published:
Journal of Applied Spectroscopy Aims and scope

IR, Raman, and electronic spectra of silole have been investigated in vacuum using density functional theory (DFT) methods. Vibrational anharmonic wavenumbers have been computed through the second-order perturbation theory using the B3LYP functional. Anharmonic contributions reduce the harmonic wavenumbers, thus improving the agreement with experiment, the largest anharmonic corrections being found for the C–H stretches (140–165 cm–1, 4–5 %). Electronic spectra have been calculated through the time-dependent DFT procedure using conventional (B3LYP, PBE0) and long-range corrected (CAM-B3LYP, ωB97X-D, LC-ωPBE) functionals. The best performance is shown by the PBE0 method, which reproduces the experimental wavelength of the HOMO-LUMO excitation within 1 nm (+0.4 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yamaguchi and K. Tamao, Bull. Chem. Soc. Jpn., 69, 2327–2334 (1996).

    Article  Google Scholar 

  2. S. Yamaguchi and K. Tamao, J. Chem. Soc. Dalton Trans., 3693–3702 (1998).

  3. S. Yamaguchi and K. Tamao, J. Organomet. Chem., 653, 223–228 (2002).

    Article  Google Scholar 

  4. J. Shinar, S. Ijadi-Maghsoodi, Q.-X. Ni, Y. Pang, and T. J. Barton, Synth. Methods, 28, 593–598 (1989).

    Article  Google Scholar 

  5. H. Shirakawa, T. Ito, and S. Ikeda, Makromol. Chem., 179, 1565–1573 (1978).

    Article  Google Scholar 

  6. S. Millefi ori, A. Alparone, and A. Millefi ori, J. Chem. Res. (S), No. 3, 238–239 (1999).

  7. A. Alparone, A. Millefi ori, and S. Millefi ori, J. Mol. Struct. (THEOCHEM), 640, 123–131 (2003).

  8. A. Alparone, A. Millefi ori, and S. Millefi ori, Chem. Phys., 298, 75–86 (2004)

    Article  ADS  Google Scholar 

  9. Y. Matsuzaki, M. Nakano, K. Yamaguchi, K. Tanaka, and T. Yamabe, Chem. Phys. Lett., 263, 119–125 (1996).

    Article  ADS  Google Scholar 

  10. B. Champagne and M. Spassova, Chem. Phys. Lett., 471, 111–115 (2009).

    Article  ADS  Google Scholar 

  11. V. N. Khabashesku, V. Balaji, S. E. Boganov, O. M. Nefedov, and J. Michl, J. Am. Chem. Soc., 116, 320–329 (1994).

    Article  Google Scholar 

  12. G. Maier and H. P. Reisenauer, Eur. J. Org. Chem., No. 3, 479–487 (2003).

  13. D. A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer III, Chem. Phys., 123, 187–239 (1988).

    Article  ADS  Google Scholar 

  14. V. Barone, J. Chem. Phys., 122, 014108/1–10 (2005).

    ADS  Google Scholar 

  15. W. Schneider and W. Thiel, Chem. Phys. Lett., 157, 367–373 (1989).

    Article  ADS  Google Scholar 

  16. P. M. El'kin, O. V. Pullin, and E. A. Dzhalmukhambetova, J. Appl. Spectrosc., 74, 169–173 (2007).

    Article  ADS  Google Scholar 

  17. J. M. Bowman, J. Chem. Phys., 68, 608–610 (1978).

    Article  ADS  Google Scholar 

  18. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, J. Am. Chem. Soc., 105, 7037–7047 (1983).

    Article  Google Scholar 

  19. G. Rauhut and P. Pulay, J. Phys. Chem., 99, 3093–3100 (1995).

    Article  Google Scholar 

  20. N. C. Handy and A. Willetts, Spectrochim. Acta, A, 53, 1169–1177 (1997).

    Article  ADS  Google Scholar 

  21. V. Barone, J. Phys. Chem. A, 108, 4146–4150 (2004).

    Article  Google Scholar 

  22. V. Barone, Chem. Phys. Lett., 383, 528–532 (2004).

    Article  ADS  Google Scholar 

  23. V. Barone, G. Festa, A. Grandi, N. Rega, and N. Sanna, Chem. Phys. Lett., 388, 279–283 (2004).

    Article  ADS  Google Scholar 

  24. R. Burcl, N. C. Handy, and S. Carter, Spectrochim. Acta, A, 59, 1881–1893 (2003).

    Article  ADS  Google Scholar 

  25. A. D. Boese and J. M. L. Martin, J. Phys. Chem. A, 108, 3085–3096 (2004).

    Article  Google Scholar 

  26. V. Librando, A. Alparone, and Z. Minniti, J. Mol. Struct. (THEOCHEM), 847, 23–24 (2007).

  27. A. Alparone, Chem. Phys., 327, 127–136 (2006).

    Article  ADS  Google Scholar 

  28. P. M. El'kin, O. V. Pullin, and E. A. Dzhalmukhambetova, J. Appl. Spectrosc., 75, 21–26 (2008).

    Article  ADS  Google Scholar 

  29. P. M. El'kin, E. A. Erman, and O. V. Pullin, J. Appl. Spectrosc., 76, 156–161 (2009).

    Article  ADS  Google Scholar 

  30. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 256, 454–464 (1996).

    Article  ADS  Google Scholar 

  31. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys., 108, 4439–4449 (1998).

    Article  ADS  Google Scholar 

  32. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys., 109, 8218–8224 (1998).

    Article  ADS  Google Scholar 

  33. Gaussian 09 Revision A.02, Gaussian Inc, Wallingford, CT (2009).

  34. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 98, 1372–1377 (1993).

    Article  ADS  Google Scholar 

  36. D. E. Woon and T. H. Dunning, J. Chem. Phys., 100, 2975–2988 (1994).

    Article  ADS  Google Scholar 

  37. S. Katsyuba and E. Vandyukova, Chem. Phys. Lett., 377, 658–662 (2003).

    Article  ADS  Google Scholar 

  38. E. E. Zvereva, A. R. Shagidullin, and S. A. Katsyuba, J. Phys. Chem. A, 115, 63–69 (2011).

    Article  Google Scholar 

  39. A. Alparone and V. Librando, Chemosphere, 90, 158–163 (2013).

    Article  Google Scholar 

  40. P. Sinha, S. E. Boesch, C. Gu, R. A. Wheeler, and A. K. Wilson, J. Phys. Chem. A, 108, 9213–9217 (2004).

    Article  Google Scholar 

  41. G. A. Zhurko and D. A. Zhurko, Chemcraft, http//www.chemcraftprog.com.

  42. D. A. Long, The Raman Effect, John Wiley & Sons Ltd. (2002)

  43. D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofi ni, and C. Adamo, Chem. Phys. Lett., 465, 226–229 (2008).

    Article  ADS  Google Scholar 

  44. D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofi ni, and C. Adamo, J. Chem. Theory Comput., 4, 123–135 (2008).

    Article  Google Scholar 

  45. E. A. Perpète and D. Jacquemin, J. Mol. Struct. (THEOCHEM), 914, 100–105 (2009).

  46. D. Jacquemin, E. Brémond, A. Planchat, I. Ciofi ni, and C. Adamo, J. Chem. Theory Comput., 7, 1882–1892 (2011).

    Article  Google Scholar 

  47. A. Alparone, J. Appl. Spectrosc., 79, 552–556 (2012).

    Article  Google Scholar 

  48. C. Adamo and V. Barone, J. Chem. Phys., 110, 6158–6170 (1999).

    Article  ADS  Google Scholar 

  49. T. Yanai, D. Tew, and N. C. Handy, Chem. Phys. Lett., 393, 51–57 (2004).

    Article  ADS  Google Scholar 

  50. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615–6620 (2008).

    Article  Google Scholar 

  51. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys., 120, 8425–8433 (2004).

    Article  ADS  Google Scholar 

  52. K. A. Nguyen, J. Kennel, and R. Pachter, J. Chem. Phys., 117, 7128–7136 (2002).

    Article  ADS  Google Scholar 

  53. S. Millefiori and A. Alparone, Chem. Phys., 303, 27–36 (2004).

    Article  ADS  Google Scholar 

  54. B. Chmura, M. F. Rode, A. L. Sobolewski, L. Lapinski, and M. J. Nowak, J. Phys. Chem. A, 112, 13655–13661 (2008).

    Article  Google Scholar 

  55. M. D. Kundrat and J. Autschbach, J. Am. Chem. Soc., 130, 4404–4414 (2008).

    Article  Google Scholar 

  56. B. Jansik, A. Rizzo, H. Ågren, and B. Champagne, J. Chem. Theory Comput., 4, 457–467 (2008).

    Article  Google Scholar 

  57. L. Parkanyi, J. Organomet. Chem., 216, 9–16 (1981).

    Google Scholar 

  58. D. Delaere, M. T. Nguyen, and L. G. Vanquickenborne, Phys. Chem. Chem. Phys., 4, 1522–1530 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alparone.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 2, p. 324, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alparone, A. Vibrational and Electronic Spectra of Silole: A Theoretical PT2-DFT Anharmonic and TD-DFT Study. J Appl Spectrosc 81, 320–327 (2014). https://doi.org/10.1007/s10812-014-9931-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9931-8

Keywords

Navigation