Skip to main content
Log in

Studying substituent number effects on vibrational energy transfer by time−resolved CARS spectroscopy

  • Regular Article - Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Vibrational energy transfer was a key property of chemical reactions that remains deeply understood. In this work, the detail information of vibrational energy transfer in aniline, N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) were studied by femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy, respectively. Low frequency modes of aniline, DMA and DEA were collectively excited, the beats arising from vibrational couplings among these modes were described. With analysis of vibrational coupling, energy transfer flow from one mode to another was visualized. An investigation into the molecular structure and vibrational couplings can be found that vibrational energy transfer is related to vibrational mode symmetry. In addition, substituent groups play an important role in vibrational coupling and energy transfer of aniline, DMA and DEA. A decrease of the number of substituent vibrational modes involved in coupling and energy transfer efficiency with the increase of the amount of relative molecular mass ratio was found out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All our data are available from the corresponding author on reasonable request.]

References

  1. N.C. Cole-Filipiak, R. Knepper, M. Wood, K. Ramasesha, J. Phys. Chem. Lett. 11, 6664 (2020)

    Article  Google Scholar 

  2. H.K. Shin, J. Phys. Chem. A 124, 3031 (2020)

    Article  Google Scholar 

  3. R. Borrelli, M.F. Gelin, New J. Phys. 22, 123002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Wu, Y. Song, G. Yu, X. Chen, Y. Yang, J. Raman Spectrosc. 47, 1213 (2016)

    Article  ADS  Google Scholar 

  5. G. Yu, Y. Zeng, W. Guo, H. Wu, G. Zhu, Z. Zheng, X. Zheng, Y. Song, Y. Yang, J. Phys. Chem. A 121, 2565 (2017)

    Article  Google Scholar 

  6. A.A. Mohamed, A.W. El-Harby, J. Mol. Struct. (Thoechem) 849, 52 (2008)

    Article  Google Scholar 

  7. S. Ohashi, D. Iguchi, T.R. Heyl, P. Froimowicz, H. Ishida, Polym. Chem. 9, 4194 (2018)

    Article  Google Scholar 

  8. H. Yang, Y. Peng, L. Huang, H. Zhang, Y. Wang, S. Xie, J. Lumin. 135, 26 (2013)

    Article  Google Scholar 

  9. A.N. Manin, K.V. Drozd, G.L. Perlovich, J. Mol. Liq. 347, 118320 (2022)

    Article  Google Scholar 

  10. S. Zhao, S. Zhu, H. Zhu, G. Xie, R. Liu, H. Zhu, Opt. Mater. 126, 112183 (2022)

    Article  Google Scholar 

  11. I. Borges, R.M.P.O. Guimares, G. Monteiro-de-Castro, N.M.P. Rosa, R. Nieman, H. Lischka, A.J.A. Aquino, J. Comput. Chem. (2023). https://doi.org/10.1016/j.dyepig.2018.09.028

    Article  Google Scholar 

  12. N. Grover, N. Chaudhri, M. Sankar, Dyes Pigm. 161, 104 (2019)

    Article  Google Scholar 

  13. X. Liu, Y. Song, W. Zhang, G. Zhu, Z. Lv, W. Liu, Y. Yang, RSC Adv. 8, 29775 (2018)

    Article  ADS  Google Scholar 

  14. X. Liu, Q. Zou, W. Liu, New J. Chem. 45, 530–521 (2021)

    Article  Google Scholar 

  15. Z. Wang, A. Pakoulev, Y. Pang, D.D. Dlott, J. Phys. Chem. A 108, 9054 (2004)

    Article  Google Scholar 

  16. B.C. Pein, Y. Sun, D.D. Dlott, J. Phys. Chem. B 117, 10898 (2013)

    Article  Google Scholar 

  17. Y. Sun, B.C. Pein, D.D. Dlott, J. Phys. Chem. B 117, 15444 (2013)

    Article  Google Scholar 

  18. C.C. Yu et al., Nat. Commun. 11, 5977 (2020)

    Article  ADS  Google Scholar 

  19. Y. Yamada, N. Mikami, T. Ebata, J. Chem. Phys. 121, 11530 (2004)

    Article  ADS  Google Scholar 

  20. Y. Yamada, Y. Katsumoto, T. Ebata, Phys. Chem. Chem. Phys. P 9, 1170 (2007)

    Article  Google Scholar 

  21. X. Liu, W. Zhang, W. Liu, Y. Song, W. Zhang, J. Mol. Struct. 1199, 126966 (2020)

    Article  Google Scholar 

  22. X. Liu, H. Li, W. Liu, W. Zhang, Z. Shi, Microw. Opt. Technol. Lett. 1, 6 (2021)

    Google Scholar 

  23. X. Liu, Q. Zou, H. Li, W. Liu, B. Hu, O.A. Al-Hartomy, A. Al-Ghamdi, S. Wageh, Z. Shi, ChemistrySelect 6, 10998 (2021)

    Article  Google Scholar 

  24. R. Ahdenov, A.A. Mohammadi, S. Makarem, S. Taheri, H. Mollabagher, Heterocycl. Commun. 28, 67 (2022)

    Article  Google Scholar 

  25. H.P.R. Kannapu, V. Vaddeboina, Y.K. Park, Catal. Today 397, 28–36 (2022)

    Article  Google Scholar 

  26. D. Pan, B. Jana, J. Ganguly, J. Appl. Polymer Sci. 139, 52236 (2022)

    Article  Google Scholar 

  27. L. Wang, Y. Wu, C. Yu, J. Solid State Chem. 310, 123038 (2022)

    Article  Google Scholar 

  28. X. Liu, W. Zhang, Y. Song, G. Yu, Z. Zheng, Y. Zeng, Z. Lv, H. Song, Y. Yang, J. Phys. Chem. A 121, 4948 (2017)

    Article  Google Scholar 

  29. T. Ebata, C. Minejima, N. Mikami, J. Phys. Chem. A 106, 11070 (2002)

    Article  Google Scholar 

  30. D.A. Chernoff, S.A. Rice, J. Chem. Phys. 70, 2511 (1979)

    Article  ADS  Google Scholar 

  31. X. Liu, W. Liu, Z. Yuan, W. Zhang, Vib. Spectrosc. 116, 103296 (2021)

    Article  Google Scholar 

  32. P.M. Wojciechowski, W. Zierkiewicz, D. Michalska, P. Hobza, J. Chem. Phys. 118, 10900 (2003)

    Article  ADS  Google Scholar 

  33. G.N.R. Tripathi, R.H. Schuler, J. Chem. Phys. 86, 3795 (1987)

    Article  ADS  Google Scholar 

  34. T. Shimanouchi, J. Phys. Chem. Ref. Data 2, 225 (1973)

    Article  ADS  Google Scholar 

  35. B. Çatıkkaş, Period. Eng. Nat. Sci. 5, 2 (2017)

    Google Scholar 

  36. A.M. Brouwer, R. Wilbrandt, J. Phys. Chem. 100, 9678 (1996)

    Article  Google Scholar 

  37. G. Rajaa, K. Saravananb, and S. Sivakumarc. D, Bharathiar University, Chapter VIII (2019–2013)

  38. R.A. Weersink, S.C. Wallace, J. Phys. Chem. 97, 6127 (1993)

    Article  Google Scholar 

  39. L.O. Poizat, Spectrochim. Acta, Part A 45A, 2 (1989)

    Google Scholar 

  40. K. Bern, A. Keith, Nelson, J. Phys. Chem. 94, 859 (1992)

    Google Scholar 

  41. L. Dhar, J.A. Rogers, K.A. Nelson, Chem. Rev. 94, 157 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

Key Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant NO. 20KJA430005).

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed equally to the paper. All authors declare no conflict of interest.

Corresponding author

Correspondence to Xiaosong Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 148 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zou, Q., Li, H. et al. Studying substituent number effects on vibrational energy transfer by time−resolved CARS spectroscopy. Eur. Phys. J. D 78, 41 (2024). https://doi.org/10.1140/epjd/s10053-024-00830-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00830-w

Navigation