Skip to main content
Log in

Nutritional and ecotoxicological aspects of the acidotolerant alga Keratococcus rhaphidioides (Chlorophyta): a potential candidate for algal mediated bioremediation of extremely acidic waters

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The green alga Keratococcus rhaphidioides was isolated in axenic culture from water samples of the extremely acid Lake Caviahue (Neuquén, Argentina). The lake pH is 3.0 and K. rhaphidioides is tolerant to conditions such as the very low pH and the high concentrations of different elements. In this work, bioassays were done to study the tolerance of the alga to different pH values and high contents of Fe, Al, and Mn combined with two different chelators, fulvic acids and nitrilotriacetic acid; in addition to the ability to grow with different organic and inorganic carbon, nitrogen and phosphorus sources. In addition to the ability to grow with different organic and inorganic carbon, nitrogen and phosphorus sources. Keratococcus rhaphidioides optimum pH range was 3.0 to 4.0 with a sub-optimum range from pH 5.0 to 7.0. Growth was completely inhibited at pH 2.0. The alga can grow on inorganic CO2, glucose, and acetate, while urea and amino acids did not work as carbon sources in axenic culture. Inorganic nitrogen such as nitrate and ammonium and organic nitrogen sources like urea and leucine induced algal growth, whereas nitrite and aspartic acid had an inhibitory effect. Aluminum had toxic effects when combined with both organic chelators, nitrilotriacetic acid and fulvic acids. Iron induced inhibition only with the latter. Finally, the alga was grown in a photobioreactor under the optimum conditions determined during this work with continuous air bubbling. Algal biomass production was 10 times higher than in the nutritional assays although the time frame was also larger. In summary, the broad nutritional and pH spectrum and the tolerance to low light intensities and to metals in acid medium make K. rhaphidioides a good prospect for acid effluents bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) Humic substances in soil, sediment, and water: geochemistry, isolation and characterization. John Wiley and Sons, Hoboken pp 1–12

  • Albertano P (1995) Microalgae from sulphuric acid environments. In: Weissner W, Schnepf E, Starr RC (eds) Algae, environment and human affairs. Biopress Ltd., Bristol, pp 19–39

    Google Scholar 

  • American Public Health Association (APHA) (1992) Standard methods for the examination of water and wastewaters. 16 ed. American Public Health Association, USA,  1250 p

    Google Scholar 

  • Anderson DM, King NJ (1961) Polysaccharides of the Characeae III. The carbohydrate content of Chara australis. Biochim Biophys Acta 52:449–454

    Article  CAS  PubMed  Google Scholar 

  • Ascione R, Southwick W, Fresco JR (1966) Laboratory culturing of a thermophilic alga at high temperature. Science 153:752–755

    Article  CAS  PubMed  Google Scholar 

  • Baffico GD (2013) Optical properties and light penetration in a deep, naturally acidic, iron rich lake: Lago Caviahue (Patagonia, Argentina). Limnologica 43:475–481

    Article  CAS  Google Scholar 

  • Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catalysis Today 223:35–43

    Article  CAS  Google Scholar 

  • Beamud SG, Diaz MM, Pedrozo FL (2007) Summer phytoplankton composition and nitrogen limitation of the deep, naturally-acidic (pH∼ 2.2) Lake Caviahue, Patagonia, Argentina. Limnologica 37:37–48

    Article  CAS  Google Scholar 

  • Beamud SG, Diaz MM, Pedrozo FL (2010) Nutrient limitation of phytoplankton in a naturally acidic lake (Lake Caviahue, Argentina). Limnology 11:103–113

    Article  CAS  Google Scholar 

  • Beamud SG, Karrasch B, Pedrozo FL, Diaz MM (2014) Utilisation of organic compounds by osmotrophic algae in an acidic lake of Patagonia (Argentina). Limnology 15:163–172

    Article  CAS  Google Scholar 

  • Brock TD (1978) Biología de los microorganismos, 2nd edn. Omega, Barcelona, 774pp

    Google Scholar 

  • Cabrera JM, Diaz MM, Schultz S, Temporetti P, Pedrozo F (2016) Iron buffer system in the water column and partitioning in the sediments of the naturally acidic Lake Caviahue, Neuquén, Argentina. J Volcanol Geotherm Res 318:19–26

    Article  CAS  Google Scholar 

  • Cabrera JM, García PE, Pedrozo FL, Queimaliños CP (2020a) Dynamics of the dissolved organic matter in a stream-lake system within an extremely acid to neutral pH range: Agrio-Caviahue watershed. Spectrochim Acta A 235:118278

    Article  CAS  Google Scholar 

  • Cabrera JM, Temporetti PF, Pedrozo FL (2020b) Trace metal partitioning and potential mobility in the naturally acidic sediment of Lake Caviahue, Neuquén, Argentina. Andean Geol 47:46–60

    Article  CAS  Google Scholar 

  • Camacho Rubio F, Fernández AF, Sanchez Pérez J, García Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Campbell PGC, Twiss MR, Wilkinson KJ (1997) Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can J Fish Aquat Sci 54:2543–2554

    Article  CAS  Google Scholar 

  • Cettn Z, Kantar C, Alpaslan M (2009) Interactions between uronic acids and chromium(III). Env Toxicol Chem 28:1599–1608

    Article  Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4:873–880

    Google Scholar 

  • Chevalier P, de la Noüe J (1985) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enz Microb Technol 7:621–624

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotech Adv 29:686–702

    Article  CAS  Google Scholar 

  • Côté B, Platt T (1983) Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol Oceanogr 28:320–344

    Article  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  PubMed  Google Scholar 

  • Estevez MS, Malanga G, Puntarulo S (2001) Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci 161:9–17

  • Filipiuk D, Fuks L, Majdan M (2005) Transition metal complexes with uronic acids. J Mol Struct 744:705–709

    Article  CAS  Google Scholar 

  • Filisetti-Cozzi TM, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  CAS  PubMed  Google Scholar 

  • Folsom BR, Popescu NA, Wood JM (1986) Comparative study of aluminum and copper transport and toxicity in an acid-tolerant freshwater green alga. Environmental Science & Technology 20:616–620

  • Gardner JL, Al-Hamdani SH (1997) Interactive effects of aluminum and humic substances on Salvinia. J Aquat Plant Manage 35:30–34

    Google Scholar 

  • Gensemer RW (1991) The effects of pH and aluminum on the growth of the acidophilic diatom Asterionella ralfsii var. americana. Limnol Oceanogr 36:123–131

    Article  CAS  Google Scholar 

  • Gerke J, Hermann R (1992) Adsorption of orthophosphate to humic-Fe. Z Pflanzenernahr Bodenk 155:233–236

    Article  CAS  Google Scholar 

  • Gimmler H (1992) Mechanisms of the acid resistance of Dunaliella acidophila. In: Murata N (ed.) Research in Photosynthesis. Vol. IV. Kluwer Academic Publishers, Dordrecht pp 203–210.

  • Gimmler H (2001) Acidophilic and acidotolerant algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses. Springer, Berlin pp 259–290

  • Gimmler H, Treffny B, Kowalski M, Zimmermann U (1991) The resistance of Dunaliella acidophila against heavy metals: the importance of the zeta potential. J Plant Physiol 138:708–716

    Article  CAS  Google Scholar 

  • Gross W (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433:31–37

    Article  CAS  Google Scholar 

  • Gustafsson, J.P., 2016. Visual MINTEQ, v 3.0. KTH - Royal Institute of Technology, Stockholm, Sweden, Department of Land and Water Resources Engineering. https://vminteq.lwr.kth.se/download/

  • Hargreaves JW, Whitton BA (1976) Effect of pH on growth of acid stream algae. Br Phycol J 11:215–223

    Article  Google Scholar 

  • Hill GJC, Machlis L (1970) Defined media for growth and gamete production by the green alga Oedogonium cardiacum. Plant Physiol 46:224–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoham RW, Mohn WW (1985) The optimum ph of four strains of acidophilic snow algae in the genus Chloromonas (Chlorophyta) and possible effects of acid precipitation. J Phycol 21:603–609

    Article  CAS  Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787

    Article  CAS  PubMed  Google Scholar 

  • Jackson TA, Bistricki T (1995) Selective scavenging of copper, zinc, lead, and arsenic by iron and manganese oxyhydroxide coatings on plankton in lakes polluted with mine and smelter wastes: results of energy dispersive X-ray micro-analysis. J Geochem Explor 52:97–125

    Article  CAS  Google Scholar 

  • Jagadeesh E, Khan B, Chandran P, Khan SS (2015) Toxic potential of iron oxide, CdS/Ag2S composite, CdS and Ag2S NPs on a fresh water alga Mougeotia sp. Colloids Surfaces B 125:284–290

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PloS One 7:e43983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer K, Buffle J (2001) Adsorption of fulvic acid on algal surfaces and its effect on carbon uptake. J Phycol 37:47–51

  • Lamelas C, Slaveykova VI (2007) Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid. Env Sci Technol 41:4172–4178

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Env Contam Toxicol 39:413–419

    Article  CAS  Google Scholar 

  • Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14

    Article  CAS  Google Scholar 

  • Miller CJ, Rose AL, Waite TD (2013) Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions. Env Sci Technol 47:829–835

    Article  CAS  Google Scholar 

  • Morris OP, Russell G (1973) Effect of chelation on toxicity of copper. Mar Poll Bull 4:159–160

    Article  Google Scholar 

  • Murphy JA, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta 27:31–36

    Article  CAS  Google Scholar 

  • Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK, May HM (1996) Aqueous equilibrium data for mononuclear aluminum species. In: Sposito G (ed) The Environmental Chemistry of Aluminum, 2nd edn. CRC Press, Boca Raton, pp 39–80

    Google Scholar 

  • Olaveson MM, Stokes PM (1989) Responses of the acidophilic alga Euglena mutabilis (Euglenophyceae) to carbon enrichment at pH 3. J Phycol 25:529–539

    Article  Google Scholar 

  • Oliveira L, Antia NJ (1986) Nickel ion requirements for autotrophic growth of several marine microalgae with urea serving as nitrogen source. Can J Fish Aquat Sci 43:2427–2433

  • Paciolla MD, Kolla S, Jansen SA (2002) The reduction of dissolved iron species by humic acid and subsequent production of reactive oxygen species. Adv Environ Res 7:169–178

  • Pakrashi S, Dalai S, Prathna TC, Trivedi S, Myneni R, Raichur AM, Mukherjee A (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 132:34–45

    Article  PubMed  CAS  Google Scholar 

  • Parent L, Campbell PG (1994) Aluminum bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water. Env Toxicol Chem 13:587–598

    Article  CAS  Google Scholar 

  • Parent L, Twiss MR, Campbell PG (1996) Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Env Sci Technol 30:1713–1720

    Article  CAS  Google Scholar 

  • Pedrozo F, Kelly L, Diaz M, Temporetti P, Baffico G, Kringel R. Friese K, Mages M, Geller W, Woelfl S (2001) First results on the water chemistry, algae and trophic status of an andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia 452:129–137.

  • Pedrozo F, Temporetti P, Beamud G, Diaz M (2008) Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. J Volcanol Geotherm Res 178:205–212

    Article  CAS  Google Scholar 

  • Pérez-Garcia O, De-Bashan LE, Hernandez JP, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol 46:800–812

    Article  CAS  Google Scholar 

  • Perreault F, Dewez D, Fortin C, Juneau P, Diallo A, Popovic R (2010) Effect of aluminum on cellular division and photosynthetic electron transport in Euglena gracilis and Chlamydomonas acidophila. Env Toxicol Chem 29:887–892

    Article  CAS  Google Scholar 

  • Rai UN, Chandra P (1992) Accumulation of copper, lead, manganese and iron by field populations of Hydrodictyon reticulatum (Linn.) Lagerheim. Sci Total Environ 116:203–211

    Article  CAS  PubMed  Google Scholar 

  • Rai LC, Husaini Y, Mallick N (1998) pH-altered interaction of aluminium and fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris. Aquat Toxicol 42:67–84

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Johnston AM (1982) Inorganic carbon transport in relation to H+ transport at the plasmalemma of photosynthetic cells. In: Marmé D, Marrè E, Hertel R (eds) Plasmalemma and Tonoplast: Their Functions in the Plant Cell. Elsevier Biomedical Press, Amsterdam, pp 41–47

    Google Scholar 

  • Riseng CM, Gensemer RW, Kilham SS (1991) The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella. Water Air Soil Pollut 60:249–261

    Article  CAS  Google Scholar 

  • Sabatini SE, Juárez AB, Eppis MR, Bianchi L, Luquet CM, Ríos de Molina MC (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Safety 72:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Saçan MT, Balcıoğlu IA (2006) A case study on algal response to raw and treated effluents from an aluminum plating plant and a pharmaceutical plant. Ecotoxicol Environ Safety 64:234–243

    Article  CAS  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanoparticle Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Sanli O, Asman G (2000) Removal of Fe(III) ions from dilute aqueous solutions by alginic acid-enhanced ultrafiltration. J Appl Polym Sci 77:1096–1101

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fert Soils 48:689–697

    Article  CAS  Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environ Chem 2:9–24

    Article  CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ, Ceresa A, Pretsch E (2003) Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environ Sci Technol 37:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Spijkerman E, Barua D, Gerloff-Elias A, Kern J, Gaedke U, Heckathorn SA (2007) Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11:551–562

  • Stokes PM (1986) Ecological effects of acidification on primary producers in aquatic systems. Water Air Soil Pollut 30:421–438

    Article  Google Scholar 

  • Sunda W (1975) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Doctoral dissertation. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, p 168. https://dspace.mit.edu/bitstream/handle/1721.1/58405/02286553-MIT.pdf;sequence=2

  • Talling J (1957) Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol 56:29–50

    Article  Google Scholar 

  • Tipping E, Rey–Castro C, Bryan SE, Hamilto–Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224

  • Törnqvist L, Claesson A (1987) The influence of aluminum on the cell-size distribution of two green algae. Environ Exp Bot 27:481–488

    Article  Google Scholar 

  • Varekamp JC (2008) The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. J Volcanol Geotherm Res 178:184–196

    Article  CAS  Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem24:208–220

  • Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vigneault B, Percot A, Lafleur M, Campbell PG (2000) Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ Sci Technol 34:3907–3913

    Article  CAS  Google Scholar 

  • Wetzel R, Likens G (1991) Limnological analysis. Springer, New York, 391 pp

    Book  Google Scholar 

  • Yoshimura E, Nagasaka S, Sato Y, Satake K, Mori S (1999) Extraordinary high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium caldarium. Soil Sci Plant Nutr 45:721–724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their thorough review and comments which helped improve the quality of the manuscript. The authors also thank Dr. Carlos Velez. In addition, J.M. Cabrera and S. Schultz were CONICET PhD fellows; G. Baffico, F. Pedrozo, and M. Diaz are CONICET researchers; and C. Rodriguez was a researcher and teacher at University of Buenos Aires.

Funding

Funding for this study was provided by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT Argentina; PICT 2008-1105; PICT 2012-1389), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina; PIP 0013), and Universidad Nacional del Comahue (UNCo, Argentina; Program 04/B166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cabrera.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary figures and data to this article can be found in the supplementary information file.

ESM 1

(DOCX 929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, J.M., Schultz, S.S., Baffico, G.D. et al. Nutritional and ecotoxicological aspects of the acidotolerant alga Keratococcus rhaphidioides (Chlorophyta): a potential candidate for algal mediated bioremediation of extremely acidic waters. J Appl Phycol 33, 1961–1975 (2021). https://doi.org/10.1007/s10811-021-02463-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02463-7

Keywords

Navigation