Skip to main content
Log in

The Cell Wall as a Barrier to Uptake of Metal Ions in the Unicellular Green Alga Chlamydomonas reinhardtii (Chlorophyceae)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The cell walls of plants, including those of algae, have the capacity to bind metal ions in negatively charged sites. The authors had already shown that the wild type (walled) strain of the unicellular green alga Chlamydomonas reinhardtii Dangeard was more tolerant to Cd, Co, Cu, and Ni than a wall-less mutant of the same species. The objective of the present study was to determine if the tolerance to metals was associated with an increased adsorption of the same metals to the cell wall. Adsorbed metal was defined as that fraction that could be removed with a solution containing Na2EDTA and CaCl2. The fraction that remained after the EDTA/CaCl2 wash was considered to be strongly bound in the cell. When exposed to metals, singly, in solution for 24 h, cells of both strains accumulated the metals. The original hypothesis was supported by the results for Cd, Co, and Ni insofar as significantly higher concentrations of these metals were in the loosely bound fraction of the walled strain in comparison with the wall-less strain. However, there are three reasons why the potentially protective effect of the cell wall did not explain differential tolerance of the two strains. After 24 h of exposure (1) less Cd was accumulated internally by the wall-less strain than by the walled strain, (2) very little of the accumulated Cu was in the loosely bound fraction of the walled strain, and (3) the two strains accumulated comparable and relatively high amounts of internal Cu. Unexpectedly, significant amounts of Cd and Cu were also removable from the surface of the wall-less cells. One possible explanation for these apparently externally bound metals in the wall-less strain is that the cells exuded metal-chelating molecules that decreased the ability of metal ions to penetrate the plasma membrane. It was concluded that metal tolerance in this alga must involve a complex of mechanisms involving both internal and external detoxification of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 February 2000/Accepted: 31 May 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macfie, S., Welbourn, P.M. The Cell Wall as a Barrier to Uptake of Metal Ions in the Unicellular Green Alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol. 39, 413–419 (2000). https://doi.org/10.1007/s002440010122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002440010122

Navigation