Skip to main content

Advertisement

Log in

Growth and photosynthetic activity of Botryococcus braunii biofilms

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Botryococcus braunii is a green microalga capable of producing large amounts of external long-chain hydrocarbons suitable as a source of biofuel. There have been several studies indicating that cultures of B. braunii can reduce the energy and water requirement for mass biofuel production, especially if non-destructive extraction methods for milking hydrocarbons are used. Growing microalgae as a raw material for biofuel using conventional liquid-based cultivation (i.e., raceway ponds) has yet to be shown to be economically successful. An alternative solid growth (biofilm) cultivation method can markedly reduce the energy requirements and costs associated with the harvesting and dewatering processes. We evaluated the growth of biofilms of several strains of B. braunii (from races A, B, L and S) and found that three of the four tested races successfully grew to stationary phase in 10 weeks with no contamination. Among all races, B. braunii BOT22 (race B) reached the highest biomass and lipid yields (3.80 mg dry weight cm−2 day−1 and 1.11 mg dry weight cm−2). Irrespective of the race, almost all photosynthetic parameters (F V /F 0 , PIABS and the OJIP curve) showed that the biofilm cultures were more stressed during lag and stationary phases than in logarithmic phase. We also studied the Botryococcus biofilm profiles using confocal microscopy and found that this method is suitable for estimating the overall biomass yield when compared with gravimetric measurement. In conclusion, the growth characteristics (biomass and lipid) and photosynthetic performance of all races indicated that B. braunii BOT22 is the most promising strain for biofilm cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. Under open raceway pond for biofuel production. Bioresource Technol 104:394–399

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Basanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuel and energy. Springer, Dordrecht, pp. 1–15

    Chapter  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25

    Article  Google Scholar 

  • Brennan L, Blanco Fernández A, Mostaert AS, Owende P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Meth 90:137–143

    Article  CAS  Google Scholar 

  • Brown AC, Knights BA, Conway E (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547

    Article  CAS  Google Scholar 

  • Chaudry S, Bahri PA, Moheimani NR (2015) Pathways of processing of wet microalgae for liquid fuel production: a critical review. Renew Sust Energ Rev 52:1240–1250

    Article  CAS  Google Scholar 

  • Chaudry S, Bahri PA, Moheimani NR (2017) Superstructure optimization and energetic feasibility analysis of process of repetitive extraction of hydrocarbons from Botryococcus braunii- a species of microalgae. Comput Chem Eng 97:36–46

    Article  CAS  Google Scholar 

  • Cheng P, Ji B, Gao L, Zhang W (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresource Technol 138:95–100

    Article  CAS  Google Scholar 

  • Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry 81A:618–626

    Article  CAS  Google Scholar 

  • Consalvey M, Perkins R, Peterson D (2005) PAM fluorescence: a beginners guide for benthic diatomists. Diatom Res 20:1–22

    Article  Google Scholar 

  • Cosgrove J, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett D, Prášil O, Borowitzka M (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp. 1–17

    Chapter  Google Scholar 

  • Dao LH, Beardall J (2016) Effect of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. Algal Res 16:150–159

    Article  Google Scholar 

  • Dayananda C, Sarada R, Usha Rani M, Shamala T, Ravishankar G (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg 31:87–93

    Article  CAS  Google Scholar 

  • de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and fuction of the photosynthetic apparatus-the protective role of polyamines. Biochim Biophy Acta 1767:272–280

    Article  CAS  Google Scholar 

  • Dixon RK (2013) Algae based biofuels. Mitig Adapt Strateg Glob Chang 18:1–4

    Article  Google Scholar 

  • Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii Var. Showa. Bioresour Technol 101:2359–2366

    Article  CAS  PubMed  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2013) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Chang 18:47–72

    Article  Google Scholar 

  • Force L, Critchley C, van Rensen J (2003) New fluorescence parameters for monitoring photosynthesis in plants: 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    Article  CAS  PubMed  Google Scholar 

  • Gates M, Rogerson A, Berger J (1982) Dry to weight biomass conversion constant for Tetrahymena elliotti (Ciliophora, protozoa). Oecologia 55:145–148

    Article  PubMed  Google Scholar 

  • Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511

    Article  CAS  PubMed  Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae, 2 edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Article  CAS  PubMed  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  PubMed  Google Scholar 

  • Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119

    Article  Google Scholar 

  • Lawrence JR, Neu TR, Swerhone GDW (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Meth 32:253–261

    Article  CAS  Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Vonshak A (1999) Photoinhibition in indoor Spirulina platensis cultures assesed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Article  Google Scholar 

  • Maxwell K, Johnson G (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Metzger P, Casadevall E (1989) Aldehydes, very long chain alkenylphenols, epoxides and other lipids from an alkadiene-producing strain of Botryococcus braunii. Phytochemistry 28:2097–2104

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadine- and botryococcene-producng races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Moheimani NR, Cord-Ruwisch R, Raes E, Borowitzka MA (2013) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol 25:1653–1661

  • Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA (2014) Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol 26:1453–1463

  • Neu TR, Woelfl S, Lawrence JR (2004) Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J Microbiol Meth 56:161–172

    Article  CAS  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technol 114:542–548

    Article  CAS  Google Scholar 

  • Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar Ecol Prog Ser 163:245–251

    Article  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Satpati G, Pal R (2015) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining-an improved technique. Ann Microbiol 65:937–949

    Article  CAS  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresource Technol 136:337–344

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Strasser B, Dau H, Heinze I, Senger H (1999) Comparison of the light induced and cell cycle dependent changes in the photosynthetic apparatus: a fluorescence induction study on the green algae Scenedesmus obliquus. Photosynth Res 60:217–227

    Article  CAS  Google Scholar 

  • Strasser BC, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation & adaptation. Taylor & Francis, London, pp. 445–482

    Google Scholar 

  • Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Env Exp Bot 56:147–157

    Article  CAS  Google Scholar 

  • Watanabe M, Kawachi M, Hiroki M, Kasai F (2000) Microalgae and protozoa (trans: agency E). NIES collection list of strains, 6 edn. National Institute for Environmental Studies, Japan

    Google Scholar 

  • Zhang J (2013) Culture of Botryococcus braunii. MSc Thesis, Murdoch University, Western Australia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R. Moheimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijihastuti, R.S., Moheimani, N.R., Bahri, P.A. et al. Growth and photosynthetic activity of Botryococcus braunii biofilms. J Appl Phycol 29, 1123–1134 (2017). https://doi.org/10.1007/s10811-016-1032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1032-z

Keywords

Navigation