Skip to main content

Chlorophyll Fluorescence Terminology: An Introduction

  • Chapter
  • First Online:
Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications

Part of the book series: Developments in Applied Phycology ((DAPH,volume 4))

Abstract

The terminology used to describe the various components of variable chlorophyll fluorescence has evolved as our understanding of variable chlorophyll fluorescence has increased. For the newcomer to in vivo chlorophyll a (chl-a) fluorescence studies one of the most confusing aspects can be the large number of terms and notations used, many of which often refer to the same parameter. Several proposals to standardise fluorescence notation, most notably by van Kooten and Snel (1990) and Maxwell and Johnson (2000), have reduced the extent of this variation in more recent publications, but some variation still occurs (Baker and Oxborough 2004). Furthermore, in recent years the notation used necessarily has become more complex as new instruments have allowed researchers to apply several techniques within a single study. On such occasions it is essential that notation also distinguishes between techniques (e.g. single turnover vs. multiple turnover) or method (e.g. steady-state light curve vs. non-steady-state light curve).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DCMU must be added in total darkness and the sample should not be exposed to any light before measurements are made: Since DCMU functions by displacing QB, even low light can cause quick net formation of Q –A artificially raising the measured F0 as Chl fluorescence is high when Q –A is present (Govindjee 2004; Huot and Babin Chapter 3).

References

  • Babin M (2008) Phytoplankton fluorescence: theory, current literature and in situ measurement. In: Babin M, Roessler CS, Cullen JJ (eds) Real-time coastal observing systems for ecosystem dynamics and harmful algal blooms: theory, instrumentation and modeling. UNESCO Publishing, Paris, pp 237–280

    Google Scholar 

  • Babin M, Morel A, Claustre H, Bricaud A, Kolber ZS, Falkowski PG (1996) Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res 43:1241–1272

    CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou G, Govindjee (eds) Chorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 65–82

    Google Scholar 

  • Baker NR, Oxborough K, Lawson T, Morrison JIL (2001) High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot 52:615–621

    CAS  Google Scholar 

  • Barranguet C, Kromkamp J (2000) Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Mar Ecol Prog Ser 204:39–52

    CAS  Google Scholar 

  • Beardall J, Quigg A, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 157–181

    Google Scholar 

  • Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277

    CAS  Google Scholar 

  • Bilger W, Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308

    CAS  Google Scholar 

  • Bolhàr-Nordenkampf HR, Öquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, London, pp 193–206

    Google Scholar 

  • Bradbury M, Baker NR (1984) A quantitative determination of photochemical and non-photochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765:275–281

    CAS  Google Scholar 

  • Brand LE (1982) Persistent diel rhythms in the chlorophyll flourescence of marine phytoplankton species. Mar Biol 69:253–262

    Google Scholar 

  • Braslavsky SE (2007) Glossary of terms used in photochemistry 3rd edition. Pure Appl Chem 79:293–465

    CAS  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1983) Optical efficiency factors of some phytoplankters. Limnol Oceanogr 28:816–832

    Google Scholar 

  • Büchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kenetics in algae: progress, problems and perspectives. Photochem Photobiol 58:137–148

    Google Scholar 

  • Carr H, Björk M (2003) A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical Ulva (Chlorophyceae) species under different light and inorganic carbon conditions. J Phycol 39:1125–1131

    CAS  Google Scholar 

  • Cosgrove J, Borowitzka M (2006) Applying pulse amplitude modulation (PAM) fluorometry to microalgae suspensions: stirring potentially impacts fluorescence. Photosynth Res 88:343–350

    CAS  Google Scholar 

  • Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88:256–264

    CAS  Google Scholar 

  • Dau H (1994) Short-term adaptation of plants to changing light intensities and its relation to phytosystem II photoche­mistry and fluorescence emission. J Photochem Photobiol B 26:3–27

    CAS  Google Scholar 

  • Dijkman NA, Kroon B (2002) Indications for chlorespiration in relation to light regime in the marine diatom Thalassiosira weissflogii. J Photochem Photobiol B 66:179–187

    CAS  Google Scholar 

  • Emerson R, Arnold W (1932) The photochemical reactions in photosynthesis. J Gen Physiol 16:191–205

    CAS  Google Scholar 

  • Estrada M, Marrasé C, Salat J (1996) In vivo fluorescence/Chlorophyll a ratio as an ecological indicator in oceanography. In: Figueroa FL, Jiménez C, Pérez-Lloréns JL, Niell FX (eds) Underwater light and algal photobiology. International Centre for Coastal Resources Research, Barcelona, pp 317–325

    Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39:235–258

    CAS  Google Scholar 

  • Falkowski P, Kolber Z (1995) Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Aust J Plant Physiol 22:241–355

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Massachusetts

    Google Scholar 

  • Falkowski P, Wyman K, Ley A, Mauzerall D (1986) Relationship of steady state photosynthesis to fluorescence in eukaryotic algae. Biochim Biophys Acta 849:183–192

    CAS  Google Scholar 

  • Gaffron H, Wohl K (1936) Zur Theorie der Assimilation I and II. Naturwissenschaften 24:81–90

    CAS  Google Scholar 

  • Geel, C (1997) Photosystem II electron flow as a measure for phytoplankton gross primary production. Ph.D. thesis, Wageningen Agricultural University, Wageningen, p 110

    Google Scholar 

  • Geider RJ, Osborne BA (1991) Algal photosynthesis: the measurement of algal gas exchange. In: Dring MJ, Melkonian M (eds) Current Phycology. Chapman & Hall, New York, pp 256

    Google Scholar 

  • Genty B, Briantais J, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gilbert M, Domin A, Becker A, Wilhelm C (2000a) Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38:111–126

    CAS  Google Scholar 

  • Gilbert M, Wilhelm C, Richter M (2000b) Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P/I) curves in four representative phytoplankton species. J Plant Physiol 157:307–314

    CAS  Google Scholar 

  • Govindjee, Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis: fluorescence transients. In: Geise AC (ed) Photophysiology. Academic Press, New York, pp 1–45

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Govindjee (2004) Chlorphyll a fluorescence: a bit of basics and history. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 1–42

    Google Scholar 

  • Govindjee, Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, USA, pp 497–537

    Google Scholar 

  • Greene R, Geider R, Kolber Z, Falkowski P (1992) Iron-induced changes in light harvesting and photochemical energy conversion process in eukaryotic marine algae. Plant Physiol 100:565–575

    CAS  Google Scholar 

  • Heredia P, Rivas JDL (2003) Fluorescence induction of Photosystem II membranes shows the steps till reduction and protonation of the quinone pool. J Plant Physiol 160:1499–1506

    CAS  Google Scholar 

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92

    CAS  Google Scholar 

  • Holub O, Seufferheld MJ, Gohlke C, Govindjee HGJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226:90–120

    CAS  Google Scholar 

  • Holzwarth A (1993) Is it time to throw away your apparatus for chlorophyll fluorescence induction? Biophys J 64:1280–1281

    CAS  Google Scholar 

  • Horton P, Hague A (1988) Studies on the inducion of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim Biophys Acta 932:107–115

    CAS  Google Scholar 

  • Ilík P, Schansker G, Kotabová E, Váczi P, Strasser RJ, Barták M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta - Bioenergetics 1757:12–20

    Google Scholar 

  • Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390

    CAS  Google Scholar 

  • Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C (2005) Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynth Res 83:343–361

    CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensãureassimilation. Naturwissenschaften 19:964

    CAS  Google Scholar 

  • Koblížek M, Kaftan D, Nedbal L (2001) On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Photosynth Res 68:141–152

    Google Scholar 

  • Kolber Z, Falkowski P (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    CAS  Google Scholar 

  • Kolber, ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM, Johnson KS, Lindley S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371:145–149

    Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    CAS  Google Scholar 

  • Krause GH, Jahns P (2004). Non-photochemical energy disipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 463–495

    Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth Res 5:139–157

    CAS  Google Scholar 

  • Krause GH, Weis E (1988) The photosynthetic apparatus and chlorophyll fluorescence: an introduction. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 3–12

    Google Scholar 

  • Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Molec Biol 42:313–349

    CAS  Google Scholar 

  • Kromkamp J, Forster R (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Europ J Phycol 38:103–113

    Google Scholar 

  • Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJ (2008) Estimating phyoplankton primary production in Lake Ijsselmeer (The Netherlands) using variable fluorescence (PAN-FRRF) and C-uptake techniques. Eur J Phycol 43:327–344

    CAS  Google Scholar 

  • Kroon B, Prézelin B, Schofield O (1993) Chromatic regulation of quantum yields for photosystem II charge separation, oxygen evolution, and carbon fixation in Heterocapsa pygmaea (Pyrrophyta). J Phycol 29:453–462

    CAS  Google Scholar 

  • Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S (2001) Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Prog Ser 223:1–14

    Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Google Scholar 

  • Lazár D, Pospíšil P, NauÅ¡ J (1999) Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2. Photosynthetica 37:255–265

    Google Scholar 

  • Ley A, Mauzerall D (1982) Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680:95–106

    CAS  Google Scholar 

  • Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res Oceanogr Abst 13:223–227

    Google Scholar 

  • Macintyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen R (ed) Algal culturing techniques. Elsevier/Academic Press, Boston, pp 287–326

    Google Scholar 

  • Magnusson G (1997) Diurnal measurements of Fv/Fm used to improve productivity estimates in microalgae. Mar Biol 130:203–208

    Google Scholar 

  • Maske H, Haardt H (1987) Quantitative in vivo absorption spectra of phytoplankton: Detrital absorption and comparison with fluorescence excitation spectra. Limnol Oceanogr 32:620–633

    Google Scholar 

  • Masojidek J, Torzillo G, Koblížek M, Kopecky J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209:126–135

    CAS  Google Scholar 

  • Mauzerall D, Greenbaum NL (1989) The absolute size of a photosynthetic unit. Biochim Biophys Acta 974:119–140

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    CAS  Google Scholar 

  • McMinn A, Runcie JW, Riddle M (2004) Effect of seasonal ice breakout on the photosynthesis of benthic diatom mats at Casey, Antarctica. J Phycol 40:62–69

    Google Scholar 

  • Mouget JL, Tremblin G (2002) Suitability of the fluorescence monitoring ystem (FMS, Hansatech) for measurement of photosynthetic characteristics of algae. Aquat Bot 74:219–231

    CAS  Google Scholar 

  • Mullineaux CW, Allen JF (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett 205:155–160

    CAS  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous ­illumination. I. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforsch 42c: 1246–1254

    Google Scholar 

  • Nicklisch A, Köhler J (2001) Estimation of primary production with Phyto-PAM-Fluorometry. Ann Rep Inst Freshw Ecol Inland Fish Berlin 13:47–60

    Google Scholar 

  • Olaizola M, La Roche J, Kolber Z, Falkowski P (1994) Non-photochemical quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357–370

    CAS  Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Env Exp Bot 60:438–446

    CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54:135–142

    CAS  Google Scholar 

  • Oxborough K, Hanlan ARM, Underwood GJC, Baker NR (2000) In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. Limol Oceanogr 45:1420–1425

    Google Scholar 

  • Papageorgiou G, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    CAS  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool for the assessment of photosynthetic activity. Aquat Bot 82:222–237

    CAS  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Env 23:1397–1405

    CAS  Google Scholar 

  • Renger G, Schreiber U (1986). Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, USA, pp 589–619

    Google Scholar 

  • Röttgers R (2007) Comparison of different variable chlorophyll a fluorescence techniques to determine photosynthetic parameters of natural phytoplankton. Deep Sea Res I 54:437–451

    Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski P, Kiefer D, Legendre L, Morel A, Parlsow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankt Res 19:1637–1670

    CAS  Google Scholar 

  • Schreiber U (2004). Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou G, Govindjee (eds) Chorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 279–319

    Google Scholar 

  • Schreiber U, Neubauer C (1987). The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c:1255–1264

    Google Scholar 

  • Schreiber U, Bilger W, Schliwa U (1986) Continuous recording of photochemical and non-photochemical quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  Google Scholar 

  • Schreiber U, Endo T, Mi H, Asada K (1995a) Quenching analysis of chlorophyll fluorescence by the saturation pulse methods: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882

    CAS  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995b) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    CAS  Google Scholar 

  • Schreiber U, Gademan R, Ralph PJ, Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclonium patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38:945–951

    CAS  Google Scholar 

  • Schreiber U, Bilger W, Hormann H, Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra A (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 320–335

    Google Scholar 

  • Seaton GGR, Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc Roy Soc London, B 242:29–35

    Google Scholar 

  • Serôdio JS, Cruz S, Vieira S, Brotas V (2005) Non-photochemical quenching of chlorophyll fluorescence and operation of the xanthophyll cycle in estuarine microphytobenthos. J Exp Mar Biol Ecol 326:157–169

    Google Scholar 

  • Serôdio J, Vieira S, Cruz S, Coelho H (2006) Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth Res 90:29–43

    Google Scholar 

  • Shibata K, Benson AA, Calvin M (1954) The absorption spectra of suspensions of living micro-organisms. Biochim Biophys Acta 15:461–470

    CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the Chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Chorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Google Scholar 

  • Suggett DJ, Oxborough K, Baker NR, Macintyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38:371–384

    Google Scholar 

  • Suggett DJ, Macintyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods 2:316–332

    Google Scholar 

  • Suggett DJ, Moore CM, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FFR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19

    Google Scholar 

  • Ting CS, Owens TG (1992) Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. PlantPhysiol 100:367–373

    CAS  Google Scholar 

  • Ting CS, Owens TG (1993) Photochemical and nonphotochemical fluorescence quenching processes in the diatom Phaeodactylum tricornutum. Plant Physiol 101:1323–1330

    CAS  Google Scholar 

  • Toepel J, Gilbert M, Wilhelm C (2004) Can chlorophyll-a in-vivo fluorescence be used for quantification of carbon-based primary production in absolute terms? Arch Hydrobiol 160:515–526

    CAS  Google Scholar 

  • Trissl H (1994) Response to Falkowski et al. Biophys J 66:925–926

    Google Scholar 

  • Trissl H, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988

    CAS  Google Scholar 

  • Ulstrup K, van Oppen M, Kühl M, Ralph P (2007) Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234

    Google Scholar 

  • Van Kooten O, Snel J (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Google Scholar 

  • Walker DA (1981) Secondary fluorescence kinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation. Planta 153:273–278

    CAS  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll flourescence. Biochim Biophys Acta 894:198–208

    CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    CAS  Google Scholar 

  • Wilhelm C, Becker A, Toepel J, Vieler A, Rautenberger R (2004) Photophysiology and primary production of phytoplankton in freshwater. Physiol Plantarum 120:347–357

    CAS  Google Scholar 

  • Wood M, Oliver R (1995) Fluorescence transients in response to nutrient enrichment of nitrogen- and phosphorus-limited Microcystis aeruginosa cultures and matural phytoplankton populations: a measure of nutrient limitation. Aust J Plant Physiol 22:331–340

    CAS  Google Scholar 

  • Wozniak B, Dera J, Ficek D, Ostrowska M, Majchrowski R (2002) Dependence of the photosynthesis quantum yield in oceans on environmental factors. Oceanologia 44:439–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Cosgrove, J., Borowitzka, M.A. (2010). Chlorophyll Fluorescence Terminology: An Introduction. In: Suggett, D., Prášil, O., Borowitzka, M. (eds) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_1

Download citation

Publish with us

Policies and ethics