Skip to main content
Log in

Hatchery decontamination of Sargassum muticum juveniles and adults using a combination of sodium hypochlorite and potassium iodide

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Phaeophyte macroalgae of the genus Sargassum, including Sargassum muticum, are under investigation as a cultivation crop. Overgrowth or grazing reduces the value and productivity of the crop. This can occur both in the hatchery and during growth at sea, although juvenile stages are especially vulnerable. A decontamination protocol could be used to prevent this. Following a screening procedure, sodium hypochlorite (NaClO) and potassium iodide (KI) were selected for further study. The lethal concentrations for protozoans associated with S. muticum zygotes were 1 % KI, 0.75 % NaClO or a combination of 0.5 % KI and 0.38 % NaClO. A 3-min exposure to these treatments was able to eliminate protozoa from branchlets 20–80 % of the time. NaClO caused large reductions in the operating efficiency of photosystem II (Fq /Fm ), particularly in juveniles (74 ± 17 %), which had still not fully recovered after 17 days. This also halved juvenile density and caused negative growth. One percent KI reduced Fq /Fm in adults by 29 ± 11 %, with recovery by day 10. In juveniles, growth was reduced by 65 % and Fq /Fm by 61 ± 11 % with recovery after 17 days. A combined treatment of 0.5 % KI and 0.38 % NaClO had far milder effects: reducing adult and juveniles Fq /Fm by 6 ± 3 and 34 ± 9 % respectively, with full recovery by day 10. A reduction in juvenile growth was also seen between day 0–10 (32 %); however, size was no different to the control by day 20. This combined treatment is therefore suitable for decontamination of both juveniles and adult S. muticum tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre-Lipperheide M, Evans LV (1993) A sterilisation protocol for the Dictyotales (Phaeophyceae). J Phycol 29:243–251

    Article  Google Scholar 

  • Amsler CD, Reed DC, Neushul M (1992) The microclimate inhabited by macroalgal propagules. Br Phycol J 27:253–270

    Article  Google Scholar 

  • Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Appendix a—recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 429–538

    Google Scholar 

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “Goodness of Fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  Google Scholar 

  • Baweja P, Sahoo D, García-Jiménez RRR (2009) Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol Res 57:45–58

    Article  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Chai Z, Huo Y, He Q, Huang X, Jiang X, He P (2014) Studies on breeding of Sargassum vachellianum on artificial reefs in Gouqi Island, China. Aquaculture 424–425:189–193

  • Cheang CC, Chu KH, Fujita D, Yoshida G, Hiraoka M, Critchley A, Choi HG, Duan D, Serisawa Y, Ang PO (2010) Low genetic variability of Sargassum muticum (Phaeophyceae) revealed by a global analysis of native and introduced populations. J Appl Phycol 46:1063–1074

    Article  Google Scholar 

  • Cosgrove J, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Chapter  Google Scholar 

  • Coston-Clements L, Settle LR, Hoss DE, Cross FA (1991) Utilization of the Sargassum habitat by marine invertebrates and vertebrates - a review. NOAA Technical Memorandum NMFS-SEFSC-296: pp 32

  • Davison IR, Johnson LE, Brawley SH (1993) Sublethal stress in the intertidal zone: tidal emersion inhibits photosynthesis and retards development in embryos of the brown alga Pelvetia fastigiata. Oecologia 96:483–492

    Article  Google Scholar 

  • Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel cultures. Bioresour Technol 114:715–719

    Article  CAS  PubMed  Google Scholar 

  • Druehl LD, Hsiao SIC (1969) Axenic cultures of Laminariales in defined media. Phycologia 8:47–49

    Article  Google Scholar 

  • Enriquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208

    Chapter  Google Scholar 

  • Fernandes DRP, Yokoya NS, Yoneshigue-Valentin Y (2011) Protocol for seaweed decontamination to isolate unialgal cultures. Rev Bras Farm 21:313–316

    Article  CAS  Google Scholar 

  • Flameling I, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol Oceanogr 43:284–297

    Article  CAS  Google Scholar 

  • Forrest BM, Hopkins GA, Dodgshun TJ, Gardner JPA (2007) Efficacy of acetic acid treatments in the management of marine biofouling. Aquaculture 262:319–332

    Article  CAS  Google Scholar 

  • Fries L (1980) Axenic tissue cultures from the sporophytes of Laminaria digitata and Laminaria hyperborea (Phaeophyta). J Phycol 16:475–477

    Article  Google Scholar 

  • Gall EA, Küpper FC, Kloareg B (2004) A survey of iodine content in Laminaria digitata. Bot Mar 47:30–37

    Google Scholar 

  • Gibor A, Polne M, Biniamino M, Neushul M (1981) Exploratory studies of vegetative propagation of marine algae: procedure for obtaining axenic tissues. Proc Int Seaweed Symp 10:587–593

    Google Scholar 

  • Grimm MR (1952) Iodine content of some marine algae. Pac Sci 6:318–323

    CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Gusev MV, Tambiev AH, Kirikova NN, Shelyastina NN, Aslanyan RR (1987) Callus formation in seven species of agarophyte marine algae. Mar Biol 95:593–597

    Article  Google Scholar 

  • Hong DD, Hien HM, Son PN (2007) Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826

    Article  Google Scholar 

  • Hou X, Yan X (1998) Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ 222:141–156

    Article  CAS  Google Scholar 

  • Hsiao SIC, Druehl LD (1971) Environmental control of gametogenesis in Laminaria saccharina I the effects of light on culture media. Can J Bot 49:1503–1508

    Article  Google Scholar 

  • Hwang EK, Ha DS, Baek JM, Wee MY, Park CS (2006a) Effects of pH and salinity on the cultivated brown alga Sargassum fulvellum and associated animals. Algae 21:317–321

    Article  Google Scholar 

  • Hwang EK, Park CS, Baek JM (2006b) Artificial seed production and cultivation of the edible brown alga Sargassum fulvellum (Turner) C. Agardh: developing a new species for seaweed cultivation in Korea. J Appl Phycol 18:251–257

  • Kawachi M, Noël M-H (2005) Sterilisation and sterile technique. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 65–82

    Google Scholar 

  • Kawashima Y, Tokuda H (1990) Callus formation in Ecklonia cava Kjellman (Laminariales, Phaeophyta). Hydrobiologia 204/205:375–380

  • Kerrison P, Le HN (2015) Environmental factors on egg liberation and germling production of Sargassum muticum. J Appl Phycol. doi:10.1007/s10811-015-0580-y

    Google Scholar 

  • Kientz B, Thabard M, Cragg S, Pope J, Hellio C (2012) A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery. Bot Mar 54:457–469

    Google Scholar 

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Lawlor HJ, Borowitzka MA, McComb JA (1991) A rapid and inexpensive method for surface sterilisation of Ecklonia radiata (Phaeophyta) for tissue culture. Bot Mar 34:261–264

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McCracken IR (1989) Purifying algal cultures—a review of chemical methods. Proc N S Inst Sci 38:145–168

    Google Scholar 

  • Merrill JE, Gillingham DM (1991) Bull kelp cultivation handbook. National Coastal Resources Research and Development Institute, Portland, 60pp

    Google Scholar 

  • Moreno-Garrido I, Canavate JP (2001) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac Eng 24:107–114

    Article  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777–8796

    Article  CAS  PubMed  Google Scholar 

  • Pang SJ, Chen LT, Zhuang DG, Fei XG, Sun JZ (2005) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: enhanced seedling production in tumbled culture. Aquaculture 245:321–329

    Article  Google Scholar 

  • Pang SJ, Zhang ZH, Zhao HJ (2007) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol 19:557–565

    Article  CAS  Google Scholar 

  • Pang SJ, Liu F, Shan TF, Gao SQ, Zhang ZH (2009) Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J Appl Phycol 21:413–422

    Article  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Ragni M, Airs RL, Hennige SJ, Suggett DJ, Warner ME, Geider RJ (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70

    Article  CAS  Google Scholar 

  • Ramlov F, Plastino EM, Yokoya NS (2009) Efeitos do ágar no crescimento de explantes e na formação de calos em morfos pigmentares de Gracilaria domingensis (Kützing) Sonder ex Dickie (Gracilariales, Rhodophyta). Rev Bras Bot 32:607–615

    Article  Google Scholar 

  • Reddy CRK, Jha B, Fujita Y, Ohno M (2008) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617

    Article  Google Scholar 

  • Redmond S, Kim JK, Yarish C, Pietrak M, Bricknell I (2014) Culture of Sargassum in Korea: techniques and potential for culture in the U.S. Marine Sea Grant College program, Orono, Maine. 13 pp

  • Reed DC, Neushul M, Ebeling AW (1991) Role of settlement density on gametophyte growth and reproduction in the kelps Pterygophora californica and Macrocystis pyrifera (Phaeophyceae). J Phycol 27:361–366

    Article  Google Scholar 

  • Rød KK (2012) Sori disinfection in cultivation of Saccharina latissima. Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  • Sánchez-Saavedra MP, Voltolina D, Simental J, Carbajal-Miranda MJ (2008) Removal of epiphytes of the kelp Macrocystis pyrifera (L.) Agardh using different biocides. Hidrobiológica 18:99–104

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  CAS  PubMed  Google Scholar 

  • Sohn CH (1993) Porphyra, Undaria and Hizikia cultivation in Korea. Algae 8:207–216

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Pham VH (2012) Stocks and the uses of economic marine macrophytes of Vietnam. Russ J Mar Biol 38:285–298

    Article  Google Scholar 

  • Tsukidate J (1992) Ecology of Sargassum spp. and Sargassum forest formation. NOAA Tech Rep NMES 106:63–72

    Google Scholar 

  • Wilson TA, Graham S, Miles SA, Knox A, Parker R, Macrae MT, Meynell AD, Meynell GG, Elinor W (1964) Topley and Wilson’s principles of bacteriology and immunity. Edward Arnold, London

    Google Scholar 

  • Xie EY, Liu DC, Jia C, Chen X, Li YB (2013) Artificial seed production and cultivation of the edible brown alga Sargassum naozhouense Tseng et Lu. J Appl Phycol 25:513–522

    Article  Google Scholar 

  • Yan ZM (1984) Studies on tissue culture of Laminaria japonica and Undaria pinnatifida. Hydrobiologia 115/116:314–316

    Google Scholar 

  • Yoon JT, Sun SM, Chung G (2014) Sargassum bed restoration by transplantation of germlings grown under protective mesh cages. J Appl Phycol 26:505–509

    Article  CAS  Google Scholar 

  • Zhao Z, Zhao F, Yao J, Lu J, Ang PO, Duan D (2008) Early development of germlings of Sargassum thunbergii (Fucales, Phaeophyta) under laboratory conditions. J Appl Phycol 20:475–481

    Google Scholar 

Download references

Acknowledgments

Funding was provided by a Researcher Links Travel Grant from the British Council (App ref: 127401486) to Hau Nhu Le and Philip D Kerrison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Kerrison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 41 kb)

Supplementary Table 2

(DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerrison, P.D., Le, H.N. & Hughes, A.D. Hatchery decontamination of Sargassum muticum juveniles and adults using a combination of sodium hypochlorite and potassium iodide. J Appl Phycol 28, 1169–1180 (2016). https://doi.org/10.1007/s10811-015-0672-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0672-8

Keywords

Navigation