Skip to main content
Log in

Arbitrary Quantum Signature Based on Local Indistinguishability of Orthogonal Product States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Digital signature plays an important role in cryptography. Many quantum digital signature (QDS) schemes have been proposed up to now since the security of classic digital signature (CDS) schemes becomes more and more vulnerable with the development of quantum computing algorithms. Most of the existing quantum signature schemes are based on probabilistic comparison of quantum states, which makes the schemes very complicated. In this paper, we propose a new QDS scheme based on local indistinguishability of orthogonal product states. In the scheme, the receiver cooperates with the arbitrator to verify the valid of the signature. The analysis of security and efficiency shows that our scheme is secure and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: Delegation of the power to sign messages. IEICE Trans. Fundam. E79(A(9)), 1338–1353 (1996)

    Google Scholar 

  2. Cao, F., Cao, Z.F.: A secure identity-based proxy multi-signature scheme. Inf. Sci. 179(3), 292–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  4. Curty, M., Lutkenhaus, N.: Comment on arbitrated quantum-signature scheme. Phys. Rev. A 77(4), 046301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cao, Z.J., Markowitch, O.: A note on an arbitrated quantum signature scheme. Int. J. Quantum Inf. 7(6), 1205–1209 (2009)

    Article  MATH  Google Scholar 

  6. Zeng, G.H.: Reply to Comment on Arbitrated quantum-signature scheme. Phys. Rev. A 78(1), 016301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)

    Article  ADS  Google Scholar 

  10. Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Xu, R., Huang, L.S., Yang, W., He, L.B.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)

    Article  ADS  Google Scholar 

  12. Yang, Y.G., Wen, Q.Y.: Quantum threshold group signature. Sci. Chin. Ser. G Phys. Astron. 51(10), 1505–1514 (2008)

    Article  Google Scholar 

  13. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17(2), 415–418 (2008)

    Article  ADS  Google Scholar 

  14. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Shi, J.J., Shi, R.H., Guo, Y., Peng, X.Q., Tang, Y.: Batch proxy quantum blind signature scheme. Sci. Chin. Inf. Sci. 56(5), 052115 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wen, X.J., Niu, X.M., Ji, L.P., Tian, Y.: Aweak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    Article  ADS  Google Scholar 

  17. Wang, T.Y., Wen, Q.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)

    Article  ADS  Google Scholar 

  18. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lou, X.P., Chen, Z.G., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  21. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  22. Yang, Y.G., Lei, H., Liu, Z.C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Yu, S.X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 [quant-ph] (2015)

  24. Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)

    Article  ADS  Google Scholar 

  25. Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)

    Article  ADS  Google Scholar 

  27. Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)

    Article  ADS  Google Scholar 

  28. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)

    Article  ADS  MATH  Google Scholar 

  29. Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phy. Rev. Lett. 89, 147901 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    Article  ADS  Google Scholar 

  31. Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quant. Inf. Comput. 13, 861–879 (2013)

    Google Scholar 

  32. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pairblock. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  33. Chen, X.B., et al.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17, 225 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  35. Guo, G.P., Li, C.F., Shi, B.S., Li, J., Guo, G.C.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)

    Article  ADS  Google Scholar 

  36. Cai, Q.Y., Tan, Y.G.: Photon-number-resolving decoy-state quantum key distribution. Phys. Rev. A 73, 032305 (2006)

    Article  ADS  Google Scholar 

  37. Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  40. Fatahi, N., Naseri, M., Gong, L.H., Liao, Q.H.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56, 609–616 (2017)

    Article  MATH  Google Scholar 

  41. Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: In Herbert bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcat. Chaos. 26, 11 (2016)

    MATH  Google Scholar 

  44. Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)

    MathSciNet  Google Scholar 

  45. Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)

    MathSciNet  Google Scholar 

  46. Meng, X.Z., Zhao, S.N., Zhang, W.Y.: Adaptive dynamics analysis of a predator-prey model with selective disturbance. Appl. Math. Comput. 266, 946–958 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)

    MathSciNet  Google Scholar 

  48. Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Jiang, T.S., Jiang, Z.W., Ling, S.T.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant No. 61601171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, DH., Xu, YL. & Xu, GB. Arbitrary Quantum Signature Based on Local Indistinguishability of Orthogonal Product States. Int J Theor Phys 58, 1036–1045 (2019). https://doi.org/10.1007/s10773-018-03995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-03995-4

Keywords

Navigation