Skip to main content

Design and Implementation of an Efficient QCA-Based Multilayer Multi-Bit Parallel Shift Register Using Reversible Level-Sensitive ‘D’ Flip-Flop

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 902))

Abstract

Quantum dot cellular automata (QCA) is a current low-power nano-technology that is an effective replacement of popular CMOS technology in this recent nano-technical digital world. The QCA offers high-speed yet less complex digital circuitry. Further, QCA supports multilayer design with reversibility. In this paper, a novel nano-sized, high-speed temperature tolerance low-power multi-bit (4 bit and 8 bit) shift register with parallel-in parallel-out (PIPO) operation is designed in multilayer QCA platform using less complex reversible ‘D’ flip-flop. In this proposed design, the pipelined structure is not used up to 4 bit. Two 4-bit registers are placed in a pipelined manner to form an 8-bit structure. QCA designer software is mainly used in this research work to get the QCA-based designs and then check and calculate the required parameters. To establish the novelty of the proposed design, a parametric comparison among this proposed design and most optimized existing designs is shown in this paper based on the parameters like occupied area, cell complexity, cost, and delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(2):114–117

    Google Scholar 

  2. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  3. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825

    Article  Google Scholar 

  4. Rad SK, Heikalabad SR (2017) Reversible Flip-Flops in Quantum-Dot Cellular Automata. Int J Theor Phys 56(9):1–15

    Article  Google Scholar 

  5. Jeon J-C (2019) Time-efficient parity generator based on quantum-dot cellular automata. Int J Civ Eng Technol (IJCIET) 10:715–723

    Google Scholar 

  6. Fan S, Khamesinia MS (2021) An efficient design of parallel and serial shift registers based on quantum-dot cellular automata. Int J Theor Phys 60:2400–2411

    Article  Google Scholar 

  7. Oskouei SM, Ghaffari A (2019) Designing a new reversible ALU by QCA for reducing occupation area. J Supercomput 75(8):5118–5144

    Article  Google Scholar 

  8. Babaie S et al (2019) Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans Circuits Syst 66(6):963–967

    Google Scholar 

  9. Walus K, Dysart TJ et al (2004) QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  10. Roy SS (2016) Simplification of master power expression and effective power detection of QCA device. In IEEE students’ technology symposium, pp 272–277

    Google Scholar 

  11. Askari M, Taghizadeh M (2011) Logic circuit design in nano-scale using quantum-dot cellular automata. Eur J Sci Res 48(3):516–526

    Google Scholar 

  12. Narimani R, Safaei B, Ejlali A (2020) A comprehensive analysis on the resilience of adiabatic logic families against transient faults Integration. VLSI J 72:183–193

    Article  Google Scholar 

  13. Pidaparthi SS, Lent CS (2018) Exponentially adiabatic switching in quantum-dot cellular automata. J Low Power Electron Appl 8:1–15

    Article  Google Scholar 

  14. D’Souza N, Atulasimha J, Bandyopadhyay S (2012) An energy-efficient bennett clocking scheme for 4-state multiferroic logic. IEEE Trans Nano Technol 11(2):418–425

    Article  Google Scholar 

  15. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular autmatavia clock-zone based crossover. In: IEEE transactions on nanotechnology, 18th CSI international symposium on computer architecture and digital systems (CADS)

    Google Scholar 

  16. Waje MG, Dakhole P (2013) Design implementation of the 4-bit arithmetic logic unit using quantum-dot cellular automata. IEEE, IACC, pp 1022–1029

    Google Scholar 

  17. Timler J, Lent CS (2002) Power gain and dissipation in quantum-dot cellular automata. J Appl Phys 91:823–831

    Article  Google Scholar 

  18. Barughi YZ et al (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56:2848–2858

    Article  Google Scholar 

  19. Ganesh EN (2015) Power analysis of quantum cellular automata circuit. Procedia Mater Sci 10:381–394

    Article  Google Scholar 

  20. Roy SS (2017) Generalized quantum tunneling effect and ultimate equations for switching time and cell to cell power dissipation approximation in qca devices. Phys Tomorrow, pp 1–12

    Google Scholar 

  21. Zahmatkesh M, Tabrizchi S, Mohammadyan S, Navi K, Bagherzadeh N (2019) Robust coplanar full adder based on novel inverter in quantum cellular automata. Int J Theor Phys 58:639–655

    Article  Google Scholar 

  22. Li T, Kornovich R (2019) An Optimized design of serial-input-serial-output (SISO) and parallel-input-parallel-output (PIPO) shift registers based on quantum dot cellular automata nanotechnology. Int J Theor Phys 58:3684–3693

    Article  Google Scholar 

  23. Jeon J-C (2020) Low-complexity QCA universal shift register design using a multiplexer and D flip-flop based on electronic correlations. J Supercomput 76:6438–6452

    Article  Google Scholar 

  24. Yaqoob S, Ahmed S, Naz SF, Bashir S, Sharma S (2021) Design of efficient N‐bit shift register using optimized D flip flop in quantum-dot cellular automata technology. IET quantum communication, pp 1–10

    Google Scholar 

  25. Verhoeven M (2016) A brief introduction to QCA, pp 2–18

    Google Scholar 

  26. India Documents (2020) Chapter 3 QCA Introduction, pp 24–48

    Google Scholar 

  27. Maharaj J, Muthurathinam S (2020) Effective RCA design using quantum-dot cellular automata. Microprocess Microsyst 73:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupsa Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, R., Sarkar, S., Dhar, S. (2023). Design and Implementation of an Efficient QCA-Based Multilayer Multi-Bit Parallel Shift Register Using Reversible Level-Sensitive ‘D’ Flip-Flop. In: Dhar, S., Do, DT., Sur, S.N., Liu, H.CM. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 902. Springer, Singapore. https://doi.org/10.1007/978-981-19-2004-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2004-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2003-5

  • Online ISBN: 978-981-19-2004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics