Skip to main content
Log in

Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1348 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  6. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astro. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  7. Li, W., Chen, J., Wang, X., et al.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  9. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. arxiv:1509.09184

  10. Li, T., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  11. Heilmann, R., Grafe, M., Nolte, S., et al.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60 (1), 96–100 (2015)

    Article  Google Scholar 

  12. Wu, Y., Li, S., Ge, W., et al.: Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci. Bull. 61(4), 302–306 (2016)

    Article  Google Scholar 

  13. Gao M., Lei F. C., Du C. G., et al.: Dynamics and entanglement of a membrane-in-the-middle optomechanical system in the extremely-large-amplitude regime. Sci. China Phys. Mech. Astro. 59(1), 610301 (2016)

    Article  Google Scholar 

  14. Wang, C., Shen, W.W., Mi, S.C., et al.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull 60(23), 2016–2021 (2015)

    Article  Google Scholar 

  15. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astro. 58(4), 1–8 (2015)

    Article  Google Scholar 

  16. Freytes, H., Giuntini, R., Leporini, R., Sergioli, G.: Entanglement and quantum logical gates. Part I. Int. J. Theor. Phys. 54(12), 4518–4529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60(12), 1128–1132 (2015)

    Article  Google Scholar 

  18. Xu, J.S., Li, C.F.: Quantum integrated circuit: Classical characterization. Sci. Bull. 60(1), 141–141 (2015)

    Article  Google Scholar 

  19. Chen, L., Lei, J., Romero, J.: Quantum digital spiral imaging. Light: Sci. Appl. 3(3), e153 (2014)

    Article  Google Scholar 

  20. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  21. Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  22. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  23. Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein-Podolsky-Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    Article  ADS  Google Scholar 

  24. Fonseca, E.J.S., Monken, C.H., Pädua, S., Barbosa, G.A.: Transverse coherence length of down-converted light in the two-photon state. Phys. Rev. A 59, 1608 (1999)

    Article  ADS  Google Scholar 

  25. Law, C.K., Walmsley, I.A., Eberly, J.H.: Continuous frequency entanglement: Effective finite Hilbert space and entropy control. Phys. Rev. Lett. 84, 5304 (2000)

    Article  ADS  Google Scholar 

  26. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  27. Abouraddy, A.F., Saleh, B.E., Sergienko, A.V., Teich, M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 123602 (2001)

    Article  ADS  Google Scholar 

  28. Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71, 044302 (2005)

    Article  ADS  Google Scholar 

  29. Ye, L., Guo, G.C.: Scheme for entanglement concentration of atomic entangled states in cavity QED. Phys. Lett. A 327, 284–289 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Schmidt-Kaler, F., Haffner, H., Riebe, M., Gulde, S., Lancaster, G.P., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature(London) 422, 408–411 (2003)

    Article  ADS  Google Scholar 

  31. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  35. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  36. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109, 103111 (2011)

    Article  ADS  Google Scholar 

  39. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  40. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

    Article  ADS  Google Scholar 

  41. Lin, Q., He, B.: Bi-directional mapping between polarization and spatially encoded photonic qutrits. Phys. Rev. A 80, 062312 (2009)

    Article  ADS  Google Scholar 

  42. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302(R) (2005)

    Article  ADS  Google Scholar 

  43. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  44. Jin, G.S., Lin, Y., Wu, B.: Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)

    Article  ADS  Google Scholar 

  45. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  46. Sheng, Y., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58(6), 1–11 (2015)

    Article  Google Scholar 

  47. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23(3), 3550–3562 (2015)

    Article  ADS  Google Scholar 

  48. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  ADS  Google Scholar 

  49. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

    Article  ADS  Google Scholar 

  50. He, B., Ren, Y.H., Bergou, J.A.: Universal entangler with photon pairs in arbitrary states. J. Phys. B: At., Mol. Opt. Phys. 43, 025502 (2010)

    Article  ADS  Google Scholar 

  51. Neergaard-Nielsen, J.S., Nielsen, B.M., Takahashi, H., Vistnes, A.I., Polzik, E.S.: High purity bright single photon source. Opt. Express 15, 7940–7949 (2007)

    Article  ADS  Google Scholar 

  52. Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71(3), 033819 (2005)

    Article  ADS  Google Scholar 

  53. Kok, P., Braunstein, S.L.: Postselected versus nonpostselected quantum teleportation using parametric down-conversion. Phys. Rev. A 61(4), 042304 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XC. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors. Int J Theor Phys 56, 427–436 (2017). https://doi.org/10.1007/s10773-016-3184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3184-7

Keywords

Navigation