Skip to main content
Log in

Heralded entanglement concentration for photon systems with linear-optical elements

可预报的基于线性光学元件的光子纠缠浓缩

  • Article
  • Quantum Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We present two nonlocal entanglement concentration protocols (ECPs) to distill a subset of N-photon systems in a Greenberger-Horne-Zeilinger (GHZ) state or a W state from a set of photon systems in a partially entangled GHZ-like pure state or a less-entangled W-like state with known parameter, respectively. Our ECPs have some advantages. First, our ECPs work in a heralded way with linear-optical elements only, without the postselection based on nonlinear optics, far different from the previous ECPs. Second, they require only a copy of the less-entangled photon system in each round of the entanglement concentration process, not two copies, which decreases the difficulty of their implementation in experiment largely. Third, our ECPs avoid checking the photon number in the output modes of linear-optical elements with the sophisticated single-photon detectors. Moreover, all parties can operate the process for concentration simultaneously and independently, which leads to flexible operations and improves the performance greatly in experiment. These advantages make our ECPs useful in practical applications in long-distance quantum communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  4. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Deng F G, Long, G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  7. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  8. Zhang C X, Guo B H, Cheng G M, et al. Spin-orbit hybrid entanglement quantum key distribution scheme. Sci China-Phys Mech Astron, 2014, 57: 2043–2048

    Article  ADS  Google Scholar 

  9. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  10. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  11. Deng F G, Long, G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  12. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with highdimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  13. Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309

    Article  ADS  Google Scholar 

  14. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  15. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantumsecret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  16. Gu B, Xu F, Ding L G, et al. High-capacity three-party quantum secret sharing with hyperentanglement. Int J Theor Phys, 2012, 51: 3559–3566

    Article  MATH  MathSciNet  Google Scholar 

  17. Gu B, Li C Q, Xu F, et al. High-capacity three-party quantum secret sharing with superdense coding. Chin Phys B, 2009, 18: 4690–4694

    Article  ADS  Google Scholar 

  18. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channel. Phys Rev Lett, 1996, 76: 722–725

    Article  ADS  Google Scholar 

  19. Pan J W, Simon C, Brukner Č, et al. Entanglement purification for quantum communication. Nature, 2001, 410: 1067–1070

    Article  ADS  Google Scholar 

  20. Sheng Y B, Deng F G, Zhou H Y. Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys Rev A, 2008, 77: 042308

    Article  ADS  Google Scholar 

  21. Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys Rev A, 2010, 81: 032307

    Article  ADS  Google Scholar 

  22. Sheng Y B, Deng F G. One-step deterministic polarization-entanglement purification using spatial entanglement. Phys Rev A, 2010, 82: 044305

    Article  ADS  Google Scholar 

  23. Li X H. Deterministic polarization-entanglement purification using spatial entanglement. Phys Rev A, 2010, 82: 044304

    Article  ADS  Google Scholar 

  24. Deng F G. One-step error correction for multipartite polarization entanglement. Phys Rev A, 2011, 83: 062316

    Article  ADS  Google Scholar 

  25. Sheng Y B, Zhou L. Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys Lett, 2014, 11: 085203

    Article  ADS  Google Scholar 

  26. Ren B C, Du F F, Deng F G. Two-step hyperentanglement purification with the quantum-state-joining method. Phys Rev A, 2014, 90: 052309

    Article  ADS  Google Scholar 

  27. Deng F G. Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys Rev A, 2011, 84: 052312

    Article  ADS  Google Scholar 

  28. Wang C, Zhang Y, Jin G S. Polarization-entanglement purification and concentration using cross-kerr nonlinearity. Quantum Inform Comput, 2011, 11: 988–1002

    MATH  MathSciNet  Google Scholar 

  29. Wang C, Zhang Y, Zhang R. Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system. Opt Express, 2011, 19: 25685–25695

    Article  ADS  Google Scholar 

  30. Gu B, Chen Y L, Zhang C Y, et al. Efficient polarization entanglement purification using spatial entanglement. Chin Phys Lett, 2010, 27: 100304

    Article  ADS  Google Scholar 

  31. Sheng Y B, Zhao S Y, Liu J, et al. Atomic entanglement purification using photonic Faraday rotation. Quantum Inf Process, 2014, 13: 881–893

    Article  ADS  MATH  Google Scholar 

  32. Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046–2052

    Article  ADS  Google Scholar 

  33. Bose S, Vedral V, Knight P L. Purification via entanglement swapping and conserved entanglement. Phys Rev A, 1999, 60: 194–197

    Article  ADS  Google Scholar 

  34. Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301

    Article  ADS  Google Scholar 

  35. Zhao Z, Pan J W, Zhan M S. Practical scheme for entanglement concentration. Phys Rev A, 2001, 64: 014301

    Article  ADS  Google Scholar 

  36. Yamamoto T, Koashi M, Imoto N. Concentration and purification scheme for two partially entangled photon pairs. Phys Rev A, 2001, 64: 012304

    Article  ADS  Google Scholar 

  37. Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325

    Article  ADS  Google Scholar 

  38. Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307

    Article  ADS  Google Scholar 

  39. Deng F G. Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys Rev A, 2012, 85: 022311

    Article  ADS  Google Scholar 

  40. Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302

    Article  ADS  Google Scholar 

  41. Ren B C, Deng F G. Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys Lett, 2013, 10: 115201

    Article  ADS  Google Scholar 

  42. Ren B C, Long G L. General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt Express, 2014, 22: 6547–6561

    Article  ADS  Google Scholar 

  43. Gu B. Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J Opt Soc Am B, 2012, 29: 1685–1689

    Article  ADS  Google Scholar 

  44. Wang H F, Zhang S, Yeon K H. Linear optical scheme for entanglement concentration of two partially entangled three photon W states. Eur Phys J D, 2010, 56: 271–275

    Article  ADS  Google Scholar 

  45. Wang H F, Zhang S, Yeon K H. Linear-optics-based entanglement concentration of unknown partially entangled three photon W states. J Opt Soc Am B, 2010, 27: 2159–2164

    Article  ADS  Google Scholar 

  46. Xiong W, Ye L. Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J Opt Soc Am B, 2011, 28: 2030–2037

    Article  ADS  Google Scholar 

  47. Sheng Y B, Zhou L, Zhao S M. Efficient two-step entanglement concentration for arbitrary W states. Phys Rev A, 2012, 85: 042302

    Article  ADS  Google Scholar 

  48. Du F F, Li T, Ren B C, et al. Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. J Opt Soc Am B, 2012, 26: 1399–1405

    Article  ADS  Google Scholar 

  49. Wang C, Zhang Y, Jin G S. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys Rev A, 2011, 84: 032307

    Article  ADS  Google Scholar 

  50. Wang C. Efficient entanglement concentration for partially entangled elctrons using a quantum-dot and microcavity coupled system. Phys Rev A, 2012, 86: 012323

    Article  ADS  Google Scholar 

  51. Cao C, Wang C, He L Y, et al. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt Express, 2013, 21: 4093–4105

    Article  ADS  Google Scholar 

  52. Li T, Yang G J, Deng F G. Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt Express, 2014, 22: 23897–23911

    Article  ADS  Google Scholar 

  53. Xiong W, Ye L. Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J Opt Soc Am B, 2011, 28: 2030–2037

    Article  ADS  Google Scholar 

  54. Sun L L, Wang H F, Zhang S, et al. Entanglement concentration of partially entangled threephoton W states with weak cross-Kerr nonlinearity. J Opt Soc Am B, 2012, 29: 630–634

    Article  ADS  Google Scholar 

  55. Zhou L, Sheng Y B. Efficient single-photon entanglement concentration for quantum communications. Opt Commun, 2014, 313: 217–222

    Article  ADS  Google Scholar 

  56. Gu B, Quan D H, Xiao S R. Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement. Int J Theor Phys, 2012, 51: 2966–2973

    Article  MATH  Google Scholar 

  57. Zhou L, Sheng Y B, Cheng WW, et al. Efficient entanglement concentration for arbitrary single-photon multimode W state. J Opt Soc Am B, 2013, 30: 71–78

    Article  ADS  Google Scholar 

  58. Zhou L. Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf Process, 2013, 12: 2087–2101

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Sheng Y B, Zhou L. Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy, 2013, 15: 1776–1820

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Wang T J, Long G L. Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. J Opt Soc Am B, 2013, 30: 1069–1076

    Article  ADS  Google Scholar 

  61. Sheng Y B, Zhou L. Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J Opt Soc Am B, 2013, 30: 678–686

    Article  ADS  Google Scholar 

  62. Xu T T, Xiong W, Ye L. Concentrating arbitrary four-photon less-entangled cluster state by single photons. Mod Phys Lett B, 2013, 26: 1250214

    Article  ADS  Google Scholar 

  63. Sheng Y B, Zhou L, Wang L, et al. Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf Process, 2013, 12: 1885–1895

    Article  ADS  MATH  Google Scholar 

  64. Zhao S Y, Liu J, Zhou L, et al. Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf Process, 2013, 12: 3633–3647

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Zhang R, Zhou S H, Cao C. Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangledW state using cavity input-output process. Sci China-Phys Mech Astron, 2014 57: 1511–1518

    Article  ADS  Google Scholar 

  66. Sheng Y B, Liu J, Zhao S Y, et al. Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin Sci Bull, 2013, 58: 3507–3513

    Article  Google Scholar 

  67. Fan L L, Xia Y, Song J. Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf Process, 2014, 13: 1967–1978

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Wang C, Cao C, He L Y, et al. Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf Process, 2014, 13: 1025–1034

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Zhao S Y, Liu J, Zhou L, et al. Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf Process, 2013, 12: 3633–3647

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. Choudhury B S, Dhara A. An entanglement concentration protocol for cluster states. Quantum Inf Process, 2013, 12: 2577–2585

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Zhou L, Sheng Y B, Cheng WW, et al. Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf Process, 2013, 12: 1307–1320

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Li X H, Ghose S. Hyperconcentration for multipartite entanglement via linear optics. Laser Phys Lett, 2014, 11: 125201

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuGuo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Deng, F. Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58, 1–8 (2015). https://doi.org/10.1007/s11433-014-5638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5638-3

Keywords

关键词

Navigation