Skip to main content
Log in

Regression-Based Empirical Modeling of Thermal Conductivity of CuO-Water Nanofluid using Data-Driven Techniques

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, an empirical correlation to predict the thermal conductivity of CuO-water nanofluid is developed. The prime novelty of this work is to include the size of the nanoparticles and to utilize the techniques of artificial intelligence on this problem. The experimentation is carried out for the following operating range: working temperature between 302 K to 323 K, particle volume fraction between 0.1 % and 0.4 %, and a particle diameter of 40 nm and 80 nm. The results of the experimentation are benchmarked with the standard properties of water. Afterwards, three different data-driven techniques (SRM, GMDH and ANN) are applied for the correlation development of thermal conductivity. It is reported that GMDH of third polynomial power is the most appropriate yielding an R2 of 0.99973, SSE of 2.208834e−06, and MSE of 1.004e−08. Extensive external validation is also carried out on these techniques to ensure the correctness of the methodology. The results of these surrogate models are compared with other models based on their performance indices of regression. Another comparative study has shown that the prediction capability of our proposed regression model has a minimum deviation of ~ 0.35 % and a maximum deviation of ~ 3.7 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\( \alpha \) :

Thermal diffusivity [m2∙s−1]

\( \beta \) :

Coefficient of thermal expansion [K−1]

\( \sigma \) :

Standard deviation [W∙m−1∙K−1]

\( \phi \) :

Fraction [%]

\( \nu \) :

Kinematic viscosity [m2∙s−1]

\( d \) :

Diameter [m]

\( g \) :

Standard acceleration due to gravity [m∙s−2]

\( k \) :

Thermal conductivity [W∙m−1∙K−1]

\( L \) :

Length [m]

\( Q \) :

Heat transfer [W]

\( Ra \) :

Rayleigh number [-]

\( R \) :

Radius [m]

\( T \) :

Temperature [K]

\( nf \) :

Nanofluid

\( p \) :

Particle

References

  1. P. Hu, W.-L. Shan, F. Yu, Z.-S. Chen, Int. J. Thermophys. 29, 1968 (2008)

    Article  ADS  Google Scholar 

  2. J.L. Jiménez-Pérez, A. Cruz-Orea, J.F. Sánchez-Ramírez, F. Sánchez-Sinencio, L. Martínez-Pérez, G.A. López Muñoz, Int. J. Thermophys. 30, 1227 (2009)

    Article  ADS  Google Scholar 

  3. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)

    Article  ADS  Google Scholar 

  4. J.O. Valderrama, G. Martinez, C.A. Faúndez, Int. J. Thermophys. 32, 942 (2011)

    Article  ADS  Google Scholar 

  5. B. Czél, K.A. Woodbury, G. Gróf, Int. J. Thermophys. 34, 284 (2013)

    Article  ADS  Google Scholar 

  6. G. Scalabrin, C. Corbetti, G. Cristofoli, Int. J. Thermophys. 22, 1383–1395 (2001)

    Article  Google Scholar 

  7. G. Scalabrin, G. Cristofoli, Int. J. Thermophys. 45, 664–680 (2003)

    Article  Google Scholar 

  8. J.A. Lazzús, Int. J. Thermophys. 30, 883 (2009)

    Article  ADS  Google Scholar 

  9. A. Rostami, M. Masoudi, A. Ghaderi-Ardakani, M. Arabloo, M. Amani, Int. J. Thermophys. 37, 59 (2016)

    Article  ADS  Google Scholar 

  10. M. Vakili, M. Karami, S. Delfani, S. Khosrojerdi, K. Kalhor, J. Therm. Anal. Calorim. 129, 629 (2017)

    Article  Google Scholar 

  11. A. Kazemi-Beydokhti, H. Azizi Namaghi, M.A. Haj Asgarkhani, S. Zeinali Heris, Brazilian J. Chem. Eng. 32, 903–917 (2015)

    Article  Google Scholar 

  12. M. Afrand, D. Toghraie, N. Sina, Int. Commun. Heat Mass Transf. 417, 243–248 (2016)

    Google Scholar 

  13. E. Ahmadloo, S. Azizi, Int. Commun. Heat Mass Transf. 106, 203–210 (2016)

    Google Scholar 

  14. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  15. L. Megatif, A. Ghozatloo, A. Arimi, M. Shariati-Niasar, Exp. Heat Transf. 29, 124 (2016)

    Article  ADS  Google Scholar 

  16. J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Int. J. Heat Mass Transf. 51, 2651 (2008)

    Article  Google Scholar 

  17. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transfer 125, 567 (2003)

    Article  Google Scholar 

  18. M. Xing, J. Yu, R. Wang, Appl. Therm. Eng. 87, 344 (2015)

    Article  Google Scholar 

  19. B. Wei, C. Zou, X. Li, Int. J. Heat Mass Transf. 104, 537 (2017)

    Article  Google Scholar 

  20. R. Tariq, N.A. Sheikh, J. Xamán, A. Bassam, Appl. Energy 228, 789 (2018)

    Article  Google Scholar 

  21. R. Tariq, N.A. Sheikh, Appl. Therm. Eng. 133, 49 (2018)

    Article  Google Scholar 

  22. R. Tariq, C. Zhan, X. Zhao, N.A. Sheikh, Energy Build. 169, 430 (2018)

    Article  Google Scholar 

  23. R. Tariq, A. Sohani, J. Xamán, H. Sayyaadi, A. Bassam, O.M. Tzuc, Energy Convers. Manag. 198, 111802 (2019)

    Article  Google Scholar 

  24. R. Tariq, N.A. Sheikh, A. Bassam, J. Xamán, Heat Mass Transf. 228, 789–807 (2018)

    Google Scholar 

  25. R. Tariq, N.A. Sheikh, J. Xamán, A. Bassam, Build. Environ. 152, 105 (2019)

    Article  Google Scholar 

  26. R. Tariq, C. Zhan, N. Ahmed Sheikh, X. Zhao, Energies 11, 2656 (2018)

    Article  Google Scholar 

  27. S. Hamzehlouia, A.-F.A. Asfour, Int. J. Thermophys. 34, 987 (2013)

    Article  ADS  Google Scholar 

  28. S.Z. Heris, F. Farzin, H. Sardarabadi, Int. J. Thermophys. 36, 760 (2015)

    Article  ADS  Google Scholar 

  29. G.A. Longo, C. Zilio, Int. J. Thermophys. 34, 1288 (2013)

    Article  ADS  Google Scholar 

  30. D. Dadarlat, S. Longuemart, R. Turcu, M. Streza, L. Vekas, A. Hadj Sahraoui, Int. J. Thermophys. 35, 2032 (2014)

    Article  ADS  Google Scholar 

  31. B.-X. Wang, W.-Y. Sheng, X.-F. Peng, Int. J. Thermophys. 30, 1992 (2009)

    Article  ADS  Google Scholar 

  32. H. Fukuyama, T. Yoshimura, H. Yasuda, H. Ohta, Int. J. Thermophys. 27, 1760 (2006)

    Article  ADS  Google Scholar 

  33. D.P.H. Hasselman, Int. J. Thermophys. 39, 109 (2018)

    Article  ADS  Google Scholar 

  34. J. Ghazanfarian, Z. Shomali, A. Abbassi, Int. J. Thermophys. 36, 1416 (2015)

    Article  ADS  Google Scholar 

  35. W. Beckmann, Forsch. Geb. Ingenieurw 165 (1931)

  36. H. Kraussold, Forsch. Geb. Ingeniurw 5, 186 (1934)

    Article  Google Scholar 

  37. G.D. Raithby, K.G.T. Hollands, Adv. Heat Transf. 11, 275–281 (1975)

    Google Scholar 

  38. R. Kumar, T. Kansal, Int. J. Thermophys. 30, 710 (2009)

    Article  ADS  Google Scholar 

  39. M.J. Moran, H.N. Shapiro, Eur. J. Eng. Educ. 18, 215 (1993)

    Google Scholar 

  40. S. Guella, K. Argoub, A.M. Benkouider, A. Yahiaoui, R. Kessas, F. Bagui, Int. J. Thermophys. 36, 2820 (2015)

    Article  ADS  Google Scholar 

  41. J.A. Lazzús, Int. J. Thermophys. 32, 957 (2011)

    Article  ADS  Google Scholar 

  42. S.I. Abu-Eishah, Int. J. Thermophys. 22, 1855 (2001)

    Article  Google Scholar 

  43. Z. Shahryari, A. Sharifi, A. Mohebbi, J. Eng. Thermophys. 22, 322 (2013)

    Article  Google Scholar 

  44. T. Language, T. Computing, Components 3, 750 (2004)

    Google Scholar 

  45. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269 (2002)

    Article  Google Scholar 

  46. O. May Tzuc, I. Hernández-Pérez, E.V. Macias-Melo, A. Bassam, J. Xamán, B. Cruz, Meas. J. Int. Meas. Confed. 138, 106 (2019)

    Article  Google Scholar 

  47. N. Zhao, Z. Li, Materials (Basel). 10, 552 (2017)

    Article  ADS  Google Scholar 

  48. J.A. Esfahani, M.R. Safaei, M. Goharimanesh, L.R. de Oliveira, M. Goodarzi, S. Shamshirband, E.P.B. Filho, Powder Technol. 317, 458 (2017)

    Article  Google Scholar 

  49. S. Khosrojerdi, M. Vakili, M. Yahyaei, K. Kalhor, Int. Commun. Heat Mass Transf. 74, 11 (2016)

    Article  Google Scholar 

  50. M. Hojjat, S.G. Etemad, R. Bagheri, J. Thibault, Int. J. Heat Mass Transf. 38, 144–148 (2011)

    Article  Google Scholar 

  51. H.H. Balla, S. Abdullah, W.M.F. WanMahmood, M. Abdul Razzaq, R. Zulkifli, K. Sopian, Res. Chem. Intermed. 39, 2801 (2013)

    Article  Google Scholar 

  52. S.H. Rostamian, M. Biglari, S. Saedodin, M. Hemmat Esfe, J. Mol. Liq. 231, 364 (2017)

    Article  Google Scholar 

  53. A. Shahsavar, M. Bahiraei, Powder Technol. 318, 441 (2017)

    Article  Google Scholar 

  54. M. Hemmat-Esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian, S. Wongwises, J. Therm. Anal. Calorim. 118, 287 (2014)

    Article  Google Scholar 

  55. A. Kazemi-Beydokhti, H. Azizi Namaghi, M.A. Haj Asgarkhani, S. Zeinali Heris, A. Kazemi Beydokhti, H. Azizi Namaghi, M.A. Haj Asgarkhani, S. Zeinali Heris, Brazilian J. Chem. Eng. 32, 903 (2015)

    Google Scholar 

  56. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)

    Article  Google Scholar 

  57. E. J. Wasp, R. L. Gandhi, and J. P. Kenny, Clausthal, Ger. Fed. Repbl., Trans Tech. Publ. 1977 1, 4, 1975/77 (1975)

  58. C.H. Li, G.P. Peterson, J. Appl. Phys. 99, 1 (2006)

    Google Scholar 

  59. M. Hemmat Esfe, S. Saedodin, M. Akbari, A. Karimipour, M. Afrand, S. Wongwises, M.R. Safaei, M. Dahari, Int. Commun. Heat Mass Transf. 65, 47 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasikh Tariq or Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, R., Hussain, Y., Sheikh, N.A. et al. Regression-Based Empirical Modeling of Thermal Conductivity of CuO-Water Nanofluid using Data-Driven Techniques. Int J Thermophys 41, 43 (2020). https://doi.org/10.1007/s10765-020-2619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-2619-9

Keywords

Navigation