Skip to main content
Log in

Autoignition Temperature Prediction Using an Artificial Neural Network with Particle Swarm Optimization

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The autoignition temperatures of organic compounds were estimated using a hybrid method that includes a simple group contribution method (GCM) implemented in an artificial neural network (ANN) replacing a standard back-propagation algorithm with particle swarm optimization (PSO). A data set of 250 compounds was used for training the network. The optimal condition of the network was obtained by adjusting various parameters by trial-and-error. The capabilities of the designed network were tested in the prediction of the autoignition temperature of 93 compounds not considered during the training step. The proposed model is shown to be more accurate than those of other published works. The results show that the proposed GCM + ANN + PSO method represent an excellent alternative for the estimation of this property with acceptable accuracy (AARD = 1.7%; AAE = 10K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen C.-C., Liaw H.-J., Kuo Y.-Y.: J. Hazard. Mater. 162, 742 (2009)

    Google Scholar 

  2. Taskinen J., Yliruusi J.: Adv. Drug Deliv. Rev. 55, 1163 (2003)

    Article  Google Scholar 

  3. Pan Y., Jiang J.C., Wang R., Cao H.Y., Zhao J.: J. Hazard. Mater. 157, 510 (2008)

    Article  Google Scholar 

  4. Pan Y., Jiang J.C., Wang R., Cao H.Y., Cui Y.: J. Hazard. Mater. 164, 1242 (2009)

    Article  Google Scholar 

  5. Egolf L.M., Jurs P.C.: Ind. Eng. Chem. Res. 31, 1798 (1992)

    Article  Google Scholar 

  6. Susuki T.: Fire Mater. 18, 81 (1994)

    Article  Google Scholar 

  7. Tetteh J., Metcalfe E., Howells S.L.: Chemom. Intell. Lab. Syst. 32, 177 (1996)

    Article  Google Scholar 

  8. Tetteh J., Howells S., Metcalfe E., Suzuki T.: Chemom. Intell. Lab. Syst. 41, 17 (1998)

    Article  Google Scholar 

  9. Mitchel B.E., Jurs P.C.: J. Chem. Inf. Comput. Sci. 37, 538 (1997)

    Article  Google Scholar 

  10. Pan Y., Jiang J.C., Wang R., Cao H.Y.: Chemom. Intell. Lab. Syst. 92, 169 (2008)

    Article  Google Scholar 

  11. Albahri T.A.: Chem. Eng. Sci. 58, 3629 (2003)

    Article  Google Scholar 

  12. Albahri T.A., George R.S.: Ind. Eng. Chem. Res. 42, 5708 (2003)

    Article  Google Scholar 

  13. Lazzús J.A.: Chin. J. Chem. Phys. 22, 19 (2009)

    Article  Google Scholar 

  14. Lazzús J.A.: J. Taiwan Inst. Chem. Eng. 40, 213 (2009)

    Article  Google Scholar 

  15. Lazzús J.A.: Thermochim. Acta 489, 53 (2009)

    Article  Google Scholar 

  16. Lazzús J.A.: Int. J. Thermophys. 30, 883 (2009)

    Article  ADS  Google Scholar 

  17. Lazzús J.A.: Ind. Eng. Chem. Res. 48, 8760 (2009)

    Article  Google Scholar 

  18. Luo Q., Yi D.: Appl. Math. Comput. 199, 611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. MathWorks: MATLAB Version 6.5.0. The MathWorks Inc., Natick, MA (2002)

    Google Scholar 

  20. Da Y., Xiurun G.: Neurocomputing 63, 527 (2005)

    Article  Google Scholar 

  21. Jiang Y., Hu T., Huang C., Wu X.: Appl. Math. Comput. 193, 231 (2007)

    Article  MATH  Google Scholar 

  22. Daubert T.E., Danner R.P., Sibul H.M., Stebbins C.C.: Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation. Taylor & Francis, London (2000)

    Google Scholar 

  23. Valderrama J.O., Sanga W.W., Lazzús J.A.: Ind. Eng. Chem. Res. 47, 1318 (2008)

    Article  Google Scholar 

  24. Lydersen A.L.: Estimation of Critical Properties of Organic Compounds. Report 3. College of Engineering, University of Wisconsin, Madison, WI (1955)

    Google Scholar 

  25. Joback K., Reid R.: Chem. Eng. Commun. 57, 233 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Lazzús.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzús, J.A. Autoignition Temperature Prediction Using an Artificial Neural Network with Particle Swarm Optimization. Int J Thermophys 32, 957–973 (2011). https://doi.org/10.1007/s10765-011-0956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-0956-4

Keywords

Navigation