Skip to main content
Log in

Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic Liquids Using a Multilayer Net with Particle Swarm Optimization

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The liquid density of imidazolium-based ionic liquids has been estimated using a combined method that includes an artificial neural network and a simple group contribution method. A total of 1736 data points of density at several temperatures and pressures, corresponding to 131 ionic liquids, have been used to train the neural network developed with particle swarm optimization. To discriminate among the different substances, the molar mass and the structure of the molecule were given as input variables. Then, new values of density as a function of temperature and pressure for 33 other ionic liquids (426 data points) have been predicted and the results compared to experimental data from the literature. The results show that the chosen artificial neural network with particle swarm optimization and the group contribution method represent an excellent alternative for the estimation of the liquid density of imidazolium-based ionic liquids with acceptable accuracy (AARD=0.44; R 2 = 0.9934), for a wide range of temperatures and pressures (258 K to 393K and 99kPa to 206,940kPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 52, 80 (2007)

    Article  Google Scholar 

  2. Seddon K.R.: Kinetics Catal. 37, 693 (1996)

    Google Scholar 

  3. Zhao H., Malhotra S.V.: Aldrichim. Acta 35, 75 (2002)

    Article  Google Scholar 

  4. Paulechka Y.U., Kabo G.J., Blokhin A.V., Shaplov A.S., Lozinskaya E.I., Vygodskii Y.S.: J. Chem. Thermodyn. 39, 158 (2007)

    Article  Google Scholar 

  5. Lazzús J.A.: J. Taiwan Inst. Chem. Eng. 40, 213 (2009)

    Article  Google Scholar 

  6. Palomar J., Ferro V.R., Tordecilla J.S., Rodríguez F.: Ind. Eng. Chem. Res. 46, 6041 (2009)

    Article  Google Scholar 

  7. R.A. Mantz, P.C. Trulove, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH Verlag GmbH and Co. KGaA, Germany, 2002), pp. 56–126

  8. Esperança J.M.S.S., Guedes H.J.R., Blesic M., Rebelo L.P.N.: J. Chem. Eng. Data 51, 237 (2006)

    Article  Google Scholar 

  9. Gardas R.L., Coutinho J.A.P.: Fluid Phase Equilib. 263, 26 (2008)

    Article  Google Scholar 

  10. J.O. Valderrama, J.A. Lazzús, K. Zarricueta, in Proceedings of 2nd Internacional Symposium on Biothermodynamics (Frankfurt, Germany, 2008)

  11. A.L. Lydersen, Estimation of Critical Properties of Organic Compounds (Univ. Wisconsin Coll. Eng., Eng. Exp. Stn. Rep. 3, Wisconsin, 1955)

  12. Joback K., Reid R.: Chem. Eng. Commun. 57, 233 (1987)

    Article  Google Scholar 

  13. Tarver G.M.: J. Chem. Eng. Data 24, 136 (1979)

    Article  Google Scholar 

  14. Elbro H.S., Fredenslund A., Rasmussen P.: Ind. Eng. Chem. Res. 30, 2576 (1991)

    Article  Google Scholar 

  15. Ammon H.L., Mitchell S.: Propell. Explos. Pyrotech. 23, 260 (1998)

    Article  Google Scholar 

  16. Ammon H.L.: Struct. Chem. 12, 205 (2001)

    Article  Google Scholar 

  17. Ihmels E.C., Gmehling J.: Ind. Eng. Chem. Res. 42, 408 (2003)

    Article  Google Scholar 

  18. Stefanis E., Constantinou L., Tsivintzelis I., Panayiotou C.: Int. J. Thermophys. 26, 1369 (2005)

    Article  Google Scholar 

  19. Ye C., Shreeve J.M.: J. Phys. Chem. A 111, 1456 (2007)

    Article  Google Scholar 

  20. Hagan M.T., Demuth H.B., Beal M.: Neural Network Design. PWS Publishing Company, Boston (1996)

    Google Scholar 

  21. Lazzús J.A.: Chin. J. Chem. Phys. 22, 19 (2009)

    Article  Google Scholar 

  22. Taskinen J., Yliruusi J.: Adv. Drug Deliver. Rev. 55, 1163 (2003)

    Article  Google Scholar 

  23. Sözen A., Özalp M., Arcaklio E.: Chem. Eng. Process. 43, 1253 (2004)

    Article  Google Scholar 

  24. Lazzús J.A.: Thermochim. Acta 489, 53 (2009)

    Article  Google Scholar 

  25. Luo Q., Yi D.: Appl. Math. Comput. 199, 611 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tettech J., Metcalfe E., Howells S.L.: Chemom. Intell. Lab. Syst. 32, 177 (1996)

    Article  Google Scholar 

  27. Espinosa G., Yaffe D., Arenas A., Cohen Y., Giralt F.: Ind. Eng. Chem. Res. 40, 2757 (2001)

    Article  Google Scholar 

  28. Yaffe D., Cohen Y.: J. Chem. Inf. Comput. Sci. 41, 463 (2001)

    Google Scholar 

  29. MATLAB Version 6.5.0, The MathWorks Inc

  30. R.C. Eberhart, J. Kennedy, in Proceedings of 6th International Symposium on Micro Machine and Human Science (Nagoya, Japan, 1995), pp. 39–43

  31. Da Y., Xiurun G.: Neurocomputing 63, 527 (2005)

    Article  Google Scholar 

  32. Jiang Y., Hu T., Huang C.-C., Wu X.: Appl. Math. Comput. 193, 231 (2007)

    Article  Google Scholar 

  33. Valderrama J.O., Sanga W.W., Lazzús J.A.: Ind. Eng. Chem. Res. 47, 1318 (2008)

    Article  Google Scholar 

  34. Chen P.-Y., Hussey C.L.: Electrochim. Acta 49, 512 (2004)

    Google Scholar 

  35. Navia P., Troncoso J., Romani L.: J. Chem. Eng. Data 52, 1369 (2007)

    Article  Google Scholar 

  36. Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 51, 1881 (2007)

    Article  Google Scholar 

  37. Yang J.-Z., Zhang Q.-G., Xue F.: J. Mol. Liq. 128, 81 (2006)

    Article  Google Scholar 

  38. Zang S.-L., Zhang Q.-G., Huang M., Wang B., Yang J.-Z.: Fluid Phase Equilib. 230, 192 (2005)

    Article  Google Scholar 

  39. Zhang S., Sun N., He X., Lu X., Zhang X.: J. Phys. Chem. Ref. Data 35, 1475 (2006)

    Article  ADS  Google Scholar 

  40. Pereiro A.B., Legido J.L., Rodríguez A.: J. Chem. Thermodyn. 39, 1168 (2007)

    Article  Google Scholar 

  41. Pereiro A.B., Santamarta F.P., Tojo E., Rodríguez A., Tojo J.: J. Chem. Eng. Data 51, 952 (2006)

    Article  Google Scholar 

  42. Arce A., Rodríguez E., Soto A.: Fluid Phase Equilib. 242, 164 (2006)

    Article  Google Scholar 

  43. Larsen A.S., Holbrey J.D., Tham F.S., Reed C.A.: J. Am. Chem. Soc. 122, 7264 (2000)

    Article  Google Scholar 

  44. Carda-Broch S., Berthod A., Armstrong D.W.: Anal. Bioanal. Chem. 375, 191 (2003)

    Google Scholar 

  45. Rebelo L.P.N., Najdanovic-Visak V., Visak Z.P., Nunes da Ponte M., Szydlowski J., Cerdeiriña C.A., Troncoso J., Romaní L., Esperança J.M.S.S., Guedes H.J.R., de Sousa H.C.: Green Chem. 6, 396 (2004)

    Article  Google Scholar 

  46. Sanmamed Y.A., González-Salgado D., Troncoso J., Cerdeiriña C.A., Romaní L.: Fluid Phase Equilib. 252, 96 (2007)

    Article  Google Scholar 

  47. Zhang Q.-G., Yang J.-Z., Lu X.-M., Gui J.-S., Huang M.: Fluid Phase Equilib. 226, 207 (2004)

    Article  Google Scholar 

  48. Tong J., Liu Q.-S., Zhang P., Yang J.-Z.: J. Chem. Eng. Data 52, 1497 (2007)

    Article  Google Scholar 

  49. Blanchard L.A., Gu Z., Brennecke J.F.: J. Phys. Chem. B 105, 2437 (2001)

    Article  Google Scholar 

  50. Dzyuba S.V., Bartsch R.A.: Chem. Phys. Chem. 3, 161 (2002)

    Google Scholar 

  51. Pereiro A.B., Verdía P., Tojo E., Rodríguez A.: J. Chem. Eng. Data 52, 377 (2007)

    Article  Google Scholar 

  52. Troncoso J., Cerdeiriña C.A., Sanmamed Y.A., Romaní L., Rebelo L.P.N.: J. Chem. Eng. Data 51, 1856 (2006)

    Article  Google Scholar 

  53. Gu Z., Brennecke J.F.: J. Chem. Eng. Data 47, 339 (2002)

    Article  Google Scholar 

  54. Gómez E., González B., Calvar N., Tojo E., Domínguez A.: J. Chem. Eng. Data 51, 2096 (2006)

    Article  Google Scholar 

  55. Rodriguez H., Brennecke J.F.: J. Chem. Eng. Data 51, 2145 (2006)

    Article  Google Scholar 

  56. Tong J., Hong M., Guan W., Li J.-B., Yang J.-Z.: J. Chem. Thermodyn. 38, 1416 (2006)

    Article  Google Scholar 

  57. Xiao D., Rajian J.R., Cady A., Li S., Bartsch R.A., Quitevis E.L.: J. Phys. Chem. B 111, 4669 (2007)

    Article  Google Scholar 

  58. Shiflett M.B., Harmer M.A., Junk C.P., Yokozeki A.: Fluid Phase Equilib. 242, 220 (2006)

    Article  Google Scholar 

  59. Gomes de Azevedo R., Esperança J.M.S.S., Szydlowski J., Visak Z.P., Pires P.F., Guedes H.J.R., Rebelo L.P.N.: J. Chem. Thermodyn. 37, 888 (2005)

    Article  Google Scholar 

  60. Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F.: J. Chem. Eng. Data 49, 954 (2004)

    Article  Google Scholar 

  61. Gómez E., González B., Domínguez A., Tojo E., Tojo J.: J. Chem. Eng. Data 51, 696 (2006)

    Article  Google Scholar 

  62. Esperança J.M.S.S., Visak Z.P., Plechkova N.V., Seddon K.R., Guedes H.J.R., Rebelo L.P.N.: J. Chem. Eng. Data 51, 2009 (2006)

    Article  Google Scholar 

  63. Xu W., Wang L.-M., Nieman R.A., Angell C.A.: J. Phys. Chem. B 107, 11749 (2003)

    Article  Google Scholar 

  64. Shiflett M.B., Harmer M.A., Junk C.P., Yokozeki A.: J. Chem. Eng. Data 51, 483 (2006)

    Article  Google Scholar 

  65. Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 52, 1080 (2007)

    Article  Google Scholar 

  66. Papaiconomou N., Yakelis N., Salminen J., Bergman R., Prausnitz J.M.: J. Chem. Eng. Data 51, 1389 (2006)

    Article  Google Scholar 

  67. Kato R., Gmehling J.: J. Chem. Thermodyn. 37, 603 (2005)

    Article  Google Scholar 

  68. Glasser L.: Thermochim. Acta 421, 87 (2004)

    Article  Google Scholar 

  69. Anderson J.L., Ding R., Ellern A., Armstrong D.W.: J. Am. Chem. Soc. 127, 593 (2005)

    Article  Google Scholar 

  70. Orchillés A.V., González-Alfaro V., Miguel P.J., Vercher E., Martínez-Andreu A.: J. Chem. Thermodyn. 38, 1124 (2006)

    Article  Google Scholar 

  71. Tong J., Liu Q.-S., Guan W., Yang J.-Z.: J. Phys. Chem. B 111, 3197 (2007)

    Article  Google Scholar 

  72. Tokuda H., Tsuzuki S., Susan M.A.B.H., Hayamizu K., Watanabe M.: J. Phys. Chem. B 110, 19593 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Lazzús.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzús, J.A. Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic Liquids Using a Multilayer Net with Particle Swarm Optimization. Int J Thermophys 30, 883–909 (2009). https://doi.org/10.1007/s10765-009-0591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0591-5

Keywords

Navigation