Skip to main content
Log in

Effect of the microbial conditioning and temperature increase on the leaf consumption by shredders in Amazonian aquatic systems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We used experimental chambers to evaluate the effect of the temperature increasing and microbial conditioning degree on the survival and leaf consumption of two plant species [Protium spruceanum (Burseraceae) and Goupia glabra (Celastraceae)] by larvae of the shredder Phylloicus elektoros. We also evaluated the sporulation rate of the conditioned leaf debris. The leaf discs were incubated for 0, 7, and 15 days in a stream. Posteriorly, the treatments were inserted in chambers with temperatures of 23.2 °C and 27.5 °C. The higher sporulation rate was found in leaves of G. glabra, with no difference in sporulation among the microbial conditioning treatments. The larval survival was lower in treatments with leaves of P. spruceanum, and in the warming temperature. The microbial conditioning time did not influence larval survival. The effect of the conditioning time and temperature on the leaf consumption depended on the plant species. The foreseen temperature increases and reduction of the palatability of the leaves due to the climate change may result in negative effects on the leaf consumption and survival of larvae of P. elektoros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abelho, M. & M. A. S. Graça, 1998. Litter in a temperate deciduous forest stream ecosystem. Hydrobiologia 386: 147–152.

    Article  Google Scholar 

  • Alvim, E. A. C. C., A. O. Medeiros, R. S. Rezende & J. F. Gonçalves Jr., 2014. Small leaf breakdown in a Savannah headwater stream. Limnologica 51: 131–138.

    Article  CAS  Google Scholar 

  • Balibrea, A., V. Ferreira, V. Gonçalves & P. M. Raposeiro, 2017. Consumption, growth and survival of the endemic stream shredder Limnephilus atlanticus (Trichoptera, Limnephilidae) fed with distinct leaf species. Limnologica 64: 31–37.

    Article  Google Scholar 

  • Bärlocher, F., 2020. Sporulation by aquatic hyphomycetes. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 241–245.

    Chapter  Google Scholar 

  • Bärlocher, F. & M. A. S. Graça, 2020. Total phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 157–161.

    Chapter  Google Scholar 

  • Batista, D., C. Pascoal & F. Cássio, 2020. The increase in temperature overwhelms silver nanoparticle effects on the aquatic invertebrate Limnephilus sp. Environmental Toxicology and Chemistry 39: 1429–1437.

    Article  CAS  PubMed  Google Scholar 

  • Biasi, C., G. B. Cogo, L. U. Hepp & S. Santos, 2019. Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. Iheringia: Série Zoologia 109: e2019004.

    Article  Google Scholar 

  • Biasi, C., L. E. Fontana, R. M. Restello & L. U. Hepp, 2020. Effect of invasive Hovenia dulcis on microbial decomposition and diversity of hyphomycetes in Atlantic forest streams. Fungal Ecology. https://doi.org/10.1016/j.funeco.2019.100890.

    Article  Google Scholar 

  • Bisutti, I., I. Hilke & M. Raessler, 2004. Determination of total organic carbon – an overview of current methods. Trends in Analytical Chemistry 23: 716–726.

    Article  CAS  Google Scholar 

  • Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, E. Chauvet, J. E. Helson, A. Bruder, R. J. Albariño, C. M. Yule, M. Arunachalam, J. N. Davies, R. Figueroa, A. S. Flecker, A. Ramírez, R. G. Death, T. Iwata, J. M. Mathooko, C. Mathuriau, J. F. Gonçalves Jr., M. S. Moretti, T. Jinggut, S. Lamothe, C. M’Erimba, L. Ratnarajah, M. H. Schindler, J. Castela, L. M. Buria, A. Cornejo, V. D. Villanueva & D. C. West, 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294.

    Article  PubMed  Google Scholar 

  • Boyero, L., N. López-Rojo, A. M. Tonin, J. Pérez, F. Correa-Araneda, R. G. Pearson, J. Bosch, R. J. Albariño, S. Anbalagan, L. A. Barmuta, A. Basaguren, F. J. Burdon, A. Caliman, M. Callisto, A. R. Calor, I. C. Campbell, B. J. Cardinale, J. J. Casas, A. M. Chará-Serna, E. Chauvet, S. Ciapała, C. Colón-Gaud, A. Cornejo, A. M. Davis, M. Degebrodt, E. S. Dias, M. E. Díaz, M. M. Douglas, A. C. Encalada, R. Figueroa, A. S. Flecker, T. Fleituch, E. A. García, G. García, P. E. García, M. O. Gessner, J. E. Gómez, S. Gómez, J. F. Gonçalves Jr., M. A. S. Graça, D. C. Gwinn, R. O. Hall Jr., N. Hamada, C. Hui, D. Imazawa, T. Iwata, S. K. Kariuki, A. Landeira-Dabarca, K. Laymon, M. Leal, R. Marchant, R. T. Martins, F. O. Masese, M. Maul, B. G. McKie, A. O. Medeiros, C. M. M’Erimba, J. A. Middleton, S. Monroy, T. Muotka, J. N. Negishi, A. Ramírez, J. S. Richardson, J. Rincón, J. Rubio-Ríos, G. M. dos Santos, R. Sarremejane, F. Sheldon, A. Sitati, N. S. D. Tenkiano, S. D. Tiegs, J. R. Tolod, M. Venarsky, A. Watson & C. M. Yule, 2021. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nature Communications 12: 1–11.

    Article  CAS  Google Scholar 

  • Calderón del Cid, C. C., R. S. Rezende, A. R. Calor, J. S. Dahora, L. N. Aragão, M. L. Guedes, A. N. Caiafa & A. O. Medeiros, 2019. Temporal dynamics of organic matter, hyphomycetes and invertebrate communities in a Brazilian savanna stream. Community Ecology 20: 301–313.

    Article  Google Scholar 

  • Campos, C. M., G. R. Desiderio, R. T. Martins & N. Hamada, 2021. The Amazonian shredder caddisfly Phylloicus elektoros Prather, 2003 (Trichoptera: Calamoceratidae): description of the larva and pupa. Studies on Neotropical Fauna and Environment. https://doi.org/10.1080/01650521.2021.1933861.

    Article  Google Scholar 

  • Capps, K. A., M. A. Graça, A. C. Encalada & A. S. Flecker, 2011. Leaf-litter decomposition across three flooding regimes in a seasonally flooded Amazonian watershed. Journal of Tropical Ecology 27: 205–210.

    Article  Google Scholar 

  • Carey, N., E. T. Chester & B. J. Robson, 2021. Flow regime change alters shredder identity but not leaf litter decomposition in headwater streams affected by severe, permanent drying. Freshwater Biology 66: 1813–1830.

    Article  Google Scholar 

  • Carvajal, D., R. Alvarez & E. Osorio, 2016. Chemical variability of essential oils of Protium colombianum from two tropical life zones and their in vitro activity against isolates of Fusarium. Journal of Pest Science 89: 241–248.

    Article  Google Scholar 

  • Chung, N. & K. Suberkropp, 2009. Contribution of fungal biomass to the growth of the shredder, Pycnopsyche gentilis (Trichoptera: Limnephilidae). Freshwater Biology 54: 2212–2224.

    Article  CAS  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • DeLucia, E. H., P. D. Nabity, J. A. Zavala & M. R. Berenbaum, 2012. Climate change: resetting plant–insect interactions. Plant Physiology 160: 1677–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieter, D., D. von Schiller, E. M. García-Roger, M. M. Sánchez-Montoya, R. Gómez, J. Mora-Gómez, F. Sangiorgio, J. Gelbrecht & K. Tockner, 2011. Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquatic Sciences 7: 599–609.

    Article  Google Scholar 

  • Dostálek, T., M. B. Rokaya & Z. Münzbergová, 2020. Plant palatability and trait responses to experimental warming. Scientific Reports 10: 1–12.

    Article  CAS  Google Scholar 

  • Feio, M. J., G. F. M. Leite, R. S. Rezende, A. O. Medeiros, L. C. Cruz, J. A. S. Dahora, A. Calor, V. Neres-Lima, M. Silva-Araújo, M. Callisto, J. França, I. Martins, M. S. Moretti, J. V. Rangel, M. M. Petrucio, A. L. Lemes-Silva, R. T. Martins, K. Dias-Silva, G. P. S. Dantas, Y. Moretto & J. F. Gonçalves Jr., 2018. Macro-scale (biomes) differences in Neotropical stream processes and community structure. Global Ecology and Conservation 16: e00498.

    Article  Google Scholar 

  • Fenoy, E., F. J. Moyano & J. J. Casas, 2020. Warming and nutrient-depleted food: two difficult challenges faced simultaneously by an aquatic shredder. Freshwater Science 39: 393–404.

    Article  Google Scholar 

  • Ferreira, V., A. Gonçalves, D. L. Godbold & C. Canhoto, 2010. Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biology 16: 3284–3296.

    Article  Google Scholar 

  • Fiuza, P. O., T. C. Pérez, V. Gulis & L. F. Gusmão, 2017. Ingoldian fungi of Brazil: some new records and a review including a checklist and a key. Phytotaxa 306: 171–200.

    Article  Google Scholar 

  • Follstad Shah, J. J., J. S. Kominoski, M. Ardón, W. K. Dodds, M. O. Gessner, N. A. Griffiths, C. P. Hawkins, S. L. Johnson, A. Lecerf, C. J. LeRoy, D. W. P. Manning, A. D. Rosemond, R. L. Sinsabaugh, C. M. Swan, J. R. Webster & L. H. Zeglin, 2017. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23: 3064–3075.

    Article  PubMed  Google Scholar 

  • Gessner, M. O., 2020. Lignin and cellulose. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 179–185.

    Chapter  Google Scholar 

  • Gomes, P. P., A. O. Medeiros & J. F. Gonçalves Jr., 2016. The replacement of native plants by exotic species may affect the colonization and reproduction of aquatic hyphomycetes. Limnologica 59: 124–130.

    Article  CAS  Google Scholar 

  • Gomes, P. P., V. Ferreira, A. M. Tonin, A. O. Medeiros & J. F. Gonçalves Jr, 2018. Combined effects of dissolved nutrients and oxygen on plant litter decomposition and associated fungal communities. Microbial Ecology 75: 854–862.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, A. L., A. V. Lírio, M. A. Graça & C. Canhoto, 2016. Fungal species diversity affects leaf decomposition after drought. International Review of Hydrobiology 101: 78–86.

    Article  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in stream: a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Graça, M. A. & F. Bärlocher, 2020. Radial diffusion assay for tannins. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 163–167.

    Chapter  Google Scholar 

  • Graça, M. A. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology 95: 27–41.

    Article  Google Scholar 

  • Graça, M. A. & M. Zimmer, 2020. Physical litter properties: leaf toughness and tensile strength. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 187–193.

    Chapter  Google Scholar 

  • Graça, M. A. S., L. Maltby & P. Calow, 1993. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia 93: 139–144.

    Article  PubMed  Google Scholar 

  • Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies & C. Barrios, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.

    Article  Google Scholar 

  • Graça, M. A. S., V. Ferreira, C. Canhoto, A. C. Encalada, F. Guerrero-Bolaño, K. M. Wantzen & L. Boyero, 2015. A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100: 1–12.

    Article  CAS  Google Scholar 

  • Graça, M. A., K. Hyde & E. Chauvet, 2016. Aquatic hyphomycetes and litter decomposition in tropical–subtropical low order streams. Fungal Ecology 19: 182–189.

    Article  Google Scholar 

  • Gulis, V., L. Marvanová & E. Descals, 2020. An illustrated key to the common temperate species of aquatic hyphomycetes. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide 2nd ed. Springer, Cham: 223–239.

    Chapter  Google Scholar 

  • Harrop-Archibald, H., R. K. Didham, R. J. Standish, M. Tibbett & R. J. Hobbs, 2016. Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. Soil Biology and Biochemistry 93: 119–130.

    Article  CAS  Google Scholar 

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis [available on internet at https://www.ipcc.ch/report/ar6/wg1/]. Accessed 20 Feb 2022

  • Jabiol, J. & E. Chauvet, 2012. Fungi are involved in the effects of litter mixtures on consumption by shredders. Freshwater Biology 57: 1667–1677.

    Article  Google Scholar 

  • Johns, C. V. & L. Hughes, 2002. Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Global Change Biology 8: 142–152.

    Article  Google Scholar 

  • Kiffer, W. P., Jr., F. Mendes, C. G. Casotti, L. C. Costa & M. S. Moretti, 2018. Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS ONE. https://doi.org/10.1371/journal.pone.0190743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landeira-Dabarca, A., J. Pérez, M. A. S. Graça & L. Boyero, 2019. Joint effects of temperature and litter quality on detritivore mediated breakdown in streams. Aquatic Sciences. https://doi.org/10.1007/s00027-018-0598-8.

    Article  Google Scholar 

  • Landeiro, V. L., N. Hamada & A. S. Melo, 2008. Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian “terra firme” streams. Fundamental and Applied Limnology 172: 49–58.

    Article  Google Scholar 

  • Landeiro, V. L., N. Hamada, B. S. Godoy & A. S. Melo, 2010. Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia 649: 355–363.

    Article  Google Scholar 

  • Leite, G. F. M., F. T. C. Silva, F. K. S. P. Navarro, R. S. Rezende & J. F. Gonçalves Jr., 2016. Leaf litter input and electrical conductivity may change density of Phylloicus sp. (Trichoptera: Calamoceratidae) in a Brazilian savannah stream. Acta Limnologica Brasiliensia. https://doi.org/10.1590/S2179-975X1516.

    Article  Google Scholar 

  • Lenth, R. V., 2016. Least-squares means: the R Package lsmeans. Journal of Statistical Software 69: 1–33.

    Article  Google Scholar 

  • Magalhães, A., M. G. B. Zoghbi & A. C. Siani, 2006. 5-Methoxypropacin, a novel coumarinolignoid from Protium unifoliolatum. Natural Product Research 20: 43–46.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, I., C. M. Heppell, M. Ryo & M. C. Rillig, 2018. Application of the microbial community coalescence concept to riverine networks. Biological Reviews 93: 1832–1845.

    Article  PubMed  Google Scholar 

  • Matos, T. P., K. Dias-Silva, A. O. Medeiros, L. Brito, N. Hamada, R. T. Martins. 2022. Effects of exotic fruit plants on leaf decomposition in Amazon: a study in aquatic microcosm. Limnology. https://doi.org/10.1007/s10201-022-00699-x

    Article  Google Scholar 

  • Marks, J. C., 2019. Revisiting the fates of dead leaves that fall into streams. Annual Review of Ecology, Evolution and Systematics 50: 547–568.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. Gonçalves & N. Hamada, 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31: 337–342.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. Gonçalves Jr. & N. Hamada, 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science. https://doi.org/10.1086/681086.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. Gonçalves Jr., C. M. Campos & N. Hamada, 2017a. Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia 789: 31–44.

    Article  CAS  Google Scholar 

  • Martins, R. T., R. S. Rezende, J. F. Gonçalves Jr., A. Lopes, M. T. F. Piedade, H. L. Cavalcante & N. Hamada, 2017b. Effects of increasing temperature and CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. PLoS ONE 12: e0188791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins, R. T., J. F. Gonçalves Jr., C. M. Campos, A. Lopes, M. T. F. Piedade & N. Hamada, 2020. Leaf consumption by invertebrate aquatic shredders in the Amazon: effects of climate change and microbial conditioning. Limnology 21: 257–266.

    Article  CAS  Google Scholar 

  • Mas-Martí, E., A. M. Romaní & I. Muñoz, 2015. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder. PLoS ONE 10: e0118520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medeiros, A. O., M. Callisto, M. A. S. Graça, V. Ferreira, C. A. Rosa, J. S. França, A. Eller, R. S. Rezende & J. F. Gonçalves Jr., 2015. Microbial colonisation and litter decomposition in a Cerrado stream are limited by low dissolved nutrient concentrations. Limnética 34: 283–292.

    Google Scholar 

  • Moretti, M. S., R. D. Loyola, B. Becker & M. Callisto, 2009. Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630: 199–206.

    Article  CAS  Google Scholar 

  • Moretti, M. S., B. Becker, W. P. Kiffer Jr., L. O. da Penha & M. Callisto, 2020. Eucalyptus leaves are preferred to Cerrado native species but do not constitute a better food resource to stream shredders. Journal of Arid Environments 181: 104221.

    Article  Google Scholar 

  • Navarro, F. K. S. P. & J. F. Gonçalves Jr., 2017. Effect of leaf decomposition stage and water temperature on fragmentation activity of a shredder invertebrate species in lotic ecosystems. Iheringia: Série Zoologia 107: e2017017.

    Google Scholar 

  • Navarro, F. K. S. P. & J. F. Gonçalves Jr., 2020. Effects of microbial conditioning and temperature on the leaf-litter shredding activity of Phylloicus sp. Acta Scientiarum, Biological Sciences 42: e5291.

    Article  CAS  Google Scholar 

  • Nikolcheva, L. G., T. Bourque & F. Bärlocher, 2005. Fungal diversity during initial stages of leaf decomposition in a stream. Mycological Research 109: 246–253.

    Article  PubMed  Google Scholar 

  • Novozamsky, J., V. J. G. Houba, R. van Eck & W. van Vark, 1983. A novel digestion technique for multielement plant analysis. Communications in Soil Science and Plant Analysis 14: 239–248.

    Article  CAS  Google Scholar 

  • Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. S. Bret-Harte, W. K. Cornwell, J. M. Craine, D. E. Gurvich, C. Urcelay, E. J. Veneklaas, P. B. Reich, L. Poorter, I. J. Wright, P. Ray, L. Enrico, J. G. Pausas, A. C. De Vos, N. Buchmann, G. Funes, F. Quétier, J. G. Hodgson, K. Thompson, H. D. Morgan, H. Ter Steege, M. G. A. Van der Heijden, L. Sack, B. Blonder, P. Poschlod, M. V. Vaieretti, G. Conti, A. C. Staver, S. Aquino & J. H. C. Cornelissen, 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234.

    Article  Google Scholar 

  • Pimentel, D. R., S. R. M. Couceiro & A. K. M. Salcedo, 2020. Diet of Phylloicus (Trichoptera: Calamoceratidae) caddisfly larvae in forest streams of western Pará, central Brazilian Amazonia. Acta Limnologica Brasiliensia. https://doi.org/10.1590/s2179-975x0119.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates & R Core Team, 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-158 [available on internet at https://CRAN.R-project.org/package=nlme]. Accessed in April, 09, 2022

  • R Core Team, 2021. R: A Language and Environment for Statistical Computing [available on internet at https://www.R-project.org/]. Accessed in March, 09, 2022

  • Rezende, R. S., G. F. M. Leite, A. K. S. de Lima, L. A. B. Silva Filho, C. V. C. Chaves, A. C. H. Prette, J. S. Freitas & J. F. Gonçalves Jr., 2015. Effects of density and predation risk on leaf litter processing by Phylloicus sp. Austral Ecology 40: 693–700.

    Article  Google Scholar 

  • Rincón, J. & I. Martínez, 2006. Food quality and feeding preferences of Phylloicus sp. (Trichoptera: Calamoceratidae). Journal of the North American Benthological Society 25: 209–215.

    Article  Google Scholar 

  • Rumbos, C. I., D. Stamopoulos, G. Georgoulas & E. Nikolopoulou, 2010. Factors affecting leaf litter decomposition by Micropterna sequax (Trichoptera: Limnephilidae). International Review of Hydrobiology 95: 383–394.

    Article  CAS  Google Scholar 

  • Sales, M. A., J. F. Gonçalves, J. S. Dahora & A. O. Medeiros, 2015. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecology 69: 84–94.

    Article  CAS  PubMed  Google Scholar 

  • Santonja, M., L. Pellan & C. Piscart, 2018. Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecology and Evolution 8: 2542–2553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sena, G., J. F. Gonçalves Jr., R. T. Martins, N. Hamada & R. S. Rezende, 2020. Leaf litter quality drives the feeding by invertebrate shredders in tropical streams. Ecology and Evolution 10: 8563–8570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza-Holanda, P. M., A. M. Pes & N. Hamada, 2020. Immature stages of three species and new records of five species of Phylloicus Müller (Trichoptera, Calamoceratidae) in the northern region of Brazil. Zootaxa 4851: 111–136.

    Article  Google Scholar 

  • Suberkropp, K., 1991. Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycological Research 95: 843–850.

    Article  Google Scholar 

  • Tant, C. J., A. D. Rosemond, A. M. Helton & M. R. First, 2015. Nutrient enrichment alters the magnitude and timing of fungal, bacterial, and detritivore contributions to litter breakdown. Freshwater Science 34: 1259–1271.

    Article  Google Scholar 

  • Therneau, T., 2022. A Package for Survival Analysis in R. R package version 3.3-1 [available on internet at https://CRAN.R-project.org/package=survival]. Accessed in April, 09, 2022

  • Tonin, A. M., L. U. Hepp, R. M. Restello & J. F. Gonçalves Jr., 2014. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740: 79–88.

    Article  Google Scholar 

  • Tonin, A. M., J. F. Gonçalves Jr., P. Bambi, S. R. M. Couceiro, L. A. M. Feitoza, L. E. Fontana, N. Hamada, L. U. Hepp, V. G. Lezan-Kowalczuk, G. F. M. Leite, A. L. Lemes-Silva, L. K. Lisboa, R. C. Loureiro, R. T. Martins, A. O. Medeiros, P. B. Morais, Y. Moretto, P. C. A. Oliveria, E. B. Pereira, L. P. Ferreira, J. Pérez, M. M. Petrucio, D. F. Reis, R. S. Rezende, N. Roque, L. E. P. Santos, A. E. Siegloch, G. Tonello & L. Boyero, 2017. Plant litter dynamics in the forest–stream interface: precipitation is a major control across tropical biomes. Scientific Reports 7: 10799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villanueva, V. D., R. Albariño & C. Canhoto, 2011. Detritivores feeding on poor quality food are more sensitive to increased temperatures. Hydrobiologia 678: 155–165.

    Article  CAS  Google Scholar 

  • Wagner, R., 1990. Influence of temperature, photoperiod and nutrition on growth and consumption of Chaetopteryx villosa (Trichoptera). Holarctic Ecology 13: 247–254.

    Google Scholar 

Download references

Acknowledgements

We thank M.Sc. Claudimir Menezes for the help during the experiment. We also thank to Dra. Cecilia Veronica Nunez and Dra. Vanessa Neves Carvalho Santos, both from the Bioprospection and Biotechnology Laboratory at INPA, for the lyophilization of the leaves used in the experiment. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. RTM received Fellowship from Programa de Apoio à Fixação de Doutores no Amazonas-FIXAM/AM (Amazonas State Research Foundation: FAPEAM) and Visiting Researcher Fellowship from CNPq (National Council of Development for Scientific and Technological Development: CNPq; 380592/2022-3). RAPFS received a Fellowship from CNPq (DTI/PCI: 384482/2015-5). The collection, transport and rearing of the larvae used in this study was under the ICMBIO License #52574. NH received Research Grants from CNPq (308970/2019-5) and INPA/ MCTI. The present work was supported in part by FAPEAM-Program POSGRAD, INCT ADAPTA II funded by CNPq (465540/2014-7) and FAPEAM (0621187/2017), and CAPES–Coordination for the Improvement of Higher Education Personnel.

Funding

Programa de Apoio à Fixação de Doutores no Amazonas–FIXAM/AM (Amazonas State Research Foundation: FAPEAM). FAPEAM-Program POSGRAD. CNPq (National Council of Development for Scientific and Technological Development): DTI/PCI: 384482/2015-5; 308970/2019-5 INCT ADAPTA II funded by CNPq (465540/2014-7), FAPEAM (0621187/2017), CAPES: Coordination for the Improvement of Higher Education Personnel.

Author information

Authors and Affiliations

Authors

Contributions

RTM: conceptualization, methods, data analyses, writing (original draft), writing (reviewing and editing). RAPFS: conceptualization, methods, data acquisition, data analysis, writing (original draft), writing (review and editing). VABP: conceptualization, methods, data acquisition, writing (original draft), writing (review and editing). LB: fungal identification, writing (review and editing). AOM: fungal identification, writing (review and editing). NH: conceptualization, writing (review and editing).

Corresponding author

Correspondence to Renato Tavares Martins.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Handling Editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.T., de Freitas Silva, R.A.P., Pinto, V.A.B. et al. Effect of the microbial conditioning and temperature increase on the leaf consumption by shredders in Amazonian aquatic systems. Hydrobiologia 849, 3531–3544 (2022). https://doi.org/10.1007/s10750-022-04953-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04953-2

Keywords

Navigation