Skip to main content

Advertisement

Log in

Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae)

  • ADAPTA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Climate change may affect species diversity and, consequently, ecological processes such as leaf decomposition. We evaluated the effects of increased temperature and carbon dioxide (CO2) on fungal biomass, leaf breakdown, and on survival and growth of the shredder Phylloicus elektoros. We hypothesized that climatic changes would result in lower survival and growth of shredders and lower leaf consumption by these organisms. On the other hand, we predicted an increase in fungal biomass in response to climatic changes. We conducted an experiment in Manaus, Brazil, using four microcosms that simulate real-time air temperature and CO2 (control chamber), as well as three other chambers subjected to fixed increases in temperature and CO2 as compared to the control chamber. The “extreme” condition represented an increase of ~4.5°C in temperature and ~870 ppm in CO2 in relation to the control chamber. Total and shredder leaf-breakdown rates, fungal biomass, and shredder survival rates were significantly lower in warmer and CO2 concentrated atmospheres. Shredder growth rate and leaf breakdown by microorganisms were similar among all climatic conditions. With climatic changes, we found an increase in the relative importance of microorganisms on leaf-breakdown rates as compared to shredders. Thus, lower leaf breakdown and a change in the main decomposer due to future climatic conditions may result in major changes in the pathways of organic matter processing and, consequently, in aquatic food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World 1: 656–680.

    Article  CAS  Google Scholar 

  • Abelho, M., 2009. ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: a comparative study. International Review of Hydrobiology 94: 3–15.

    Article  CAS  Google Scholar 

  • Adams, J. A., N. C. Tuchman & P. A. Moore, 2003. Atmospheric CO2 enrichment alters leaf detritus: impacts on foraging decisions of crayfish (Orconectes virilis). Journal of the North American Benthological Society 22: 410–422.

    Article  Google Scholar 

  • Albariño, R. J. & E. G. Balseiro, 2001. Food Quality, Larval consumption, and growth of Klapopteryx kuscheli (Plecoptera: Austroperlidae) from a South Andes stream. Journal of Freshwater Ecology 16: 517–526.

    Article  Google Scholar 

  • Altman, D. G. & J. M. Bland, 1998. Time to event (survival) data. British Medical Journal 317: 468–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, N. H. & K. W. Cummins, 1979. Influences of diet on the life histories of aquatic insects. Journal of the Fisheries Research Board of Canada 36: 335–342.

    Article  Google Scholar 

  • Anderson, N. H. & E. Grafius, 1975. Utilization and processing of allochthonous material by stream Trichoptera. Verhandlungen des Internationalen Verein Limnologie 19: 3083–3088.

    Google Scholar 

  • Ardón, N., L. A. Stallcup & C. M. Pringle, 2006. Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams? Freshwater Biology 51: 618–633.

    Article  Google Scholar 

  • Atkinson, D. & R. M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12: 235–239.

    Article  CAS  PubMed  Google Scholar 

  • Bärlocher, F. & M. A. S. Graça, 2005. Total phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 97–100.

    Chapter  Google Scholar 

  • Bastian, M., L. Boyero, B. R. Jackes & R. G. Pearson, 2007. Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. Journal of Tropical Ecology 23: 219–229.

    Article  Google Scholar 

  • Becker, B., M. S. Moretti & M. Callisto, 2009. Length–dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: Calamoceratidae). Aquatic Insects 31: 227–234.

    Article  Google Scholar 

  • Bisutti, I., I. Hilke & M. Raessler, 2004. Determination of total organic carbon – an overview of current methods. Trends in Analytical Chemistry 23: 716–726.

    Article  CAS  Google Scholar 

  • Bland, J. M., 2004. The logrank test. British Medical Journal 328: 1073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bland, J. M. & D. G. Altman, 1998. Survival probabilities (the Kaplan–Meier method). British Medical Journal 317: 1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, E. Chauvet, J. E. Helson, A. Bruder, R. J. Albariño, C. M. Yule, M. Arunachalam, J. N. Davies, R. Figueroa, A. S. Flecker, A. Ramírez, R. G. Death, T. Iwata, J. M. Mathooko, C. Mathuriau, J. F. Gonçalves Jr, M. S. Moretti, T. Jinggut, S. Lamothe, C. M’Erimba, L. Ratnarajah, M. H. Schindler, J. Castela, L. M. Buria, A. Cornejo, V. D. Villanueva & D. C. West, 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294.

    Article  PubMed  Google Scholar 

  • Boyero, L., B. J. Cardinale, M. Bastian & R. G. Pearson, 2014. Biotic versus abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature. PLoS One 9: e87426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canadell, J. G., C. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton & G. Marland, 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104: 18866–18870.

    Article  CAS  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34: 209–214.

    Article  Google Scholar 

  • Carvalho, E. M. & M. A. S. Graça, 2007. A laboratory study on feeding plasticity of the shredder Sericostoma vittatum Rambur (Sericostomatidae). Hydrobiologia 575: 353–359.

    Article  Google Scholar 

  • Chauvet, E. & K. Suberkropp, 1998. Temperature and sporulation of aquatic hyphomycetes. Applied and Environmental Microbiology 64: 1522–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coviella, C. E. & J. T. Trumble, 1999. Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conservation Biology 13: 700–712.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.

    Article  Google Scholar 

  • Davies, J. N. & A. J. Boulton, 2009. Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams. Journal of the North American Benthological Society 28: 491–503.

    Article  Google Scholar 

  • Feely, R. A., S. C. Doney & S. R. Cooley, 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22: 36–47.

    Article  Google Scholar 

  • Fernandes, I., B. Uzun, C. Pascoal & F. Cássio, 2009. Responses of aquatic fungal communities on leaf litter to temperature-change events. International Review of Hydrobiology 94: 410–418.

    Article  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011a. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167: 279–291.

    Article  PubMed  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011b. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.

    Article  Google Scholar 

  • Ferreira, V., A. Gonçalves, D. L. Godbold & C. Canhoto, 2010. Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biology 16: 3284–3296.

    Article  Google Scholar 

  • Ferreira, V., A. C. Encalada & M. A. S. Graça, 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31: 945–962.

    Article  Google Scholar 

  • Foucreau, N., S. Puijalon, F. Hervant & C. Piscart, 2013. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biology 58: 1672–1681.

    Article  Google Scholar 

  • Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32: 133–142.

    Article  Google Scholar 

  • Friberg, N. & D. Jacobsen, 1999. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshwater Biology 42: 625–635.

    Article  Google Scholar 

  • Geraldes, P., C. Pascoal & F. Cássio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5: 734–740.

    Article  Google Scholar 

  • Gessner, M. O., 2005. Proximate lignin and cellulose. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 115–120.

    Chapter  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75: 1807–1817.

    Article  Google Scholar 

  • Giberson, D. J. & D. M. Rosenberg, 1992. Effects of temperature, food quantity, and nymphal rearing density on life-history traits of a northern population of Hexagenia (Ephemeroptera: Ephemeridae). Journal of the North American Benthological Society 11: 181–193.

    Article  Google Scholar 

  • Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2013. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6: 546–553.

    Article  Google Scholar 

  • Gonçalves, J. F., J. S. França, A. O. Medeiros, C. A. Rosa & M. Callisto, 2006. Leaf breakdown in a tropical stream. International Review of Hydrobiology 91: 164–177.

    Article  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in stream: a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Graça, M. A. S. & F. Bärlocher, 2005. Radial diffusion assay for s. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 101–107.

    Chapter  Google Scholar 

  • Graça, M. A. S. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review Hydrobiology 1: 27–41.

    Article  Google Scholar 

  • Graça, M. A. S. & M. Zimmer, 2005. Leaf toughness. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 121–128.

    Chapter  Google Scholar 

  • Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies & C. Barrios, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.

    Article  Google Scholar 

  • Grafius, E. & N. H. Anderson, 1979. Population dynamics, bioenergetics, and role of Lepidostoma quercina Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology 60: 433–441.

    Article  Google Scholar 

  • Grafius, E. & N. H. Anderson, 1980. Population dynamics and role of two species of Lepidostoma (Trichoptera: Lepidostomatidae) in an Oregon coniferous forest stream. Ecology 61: 808–816.

    Article  Google Scholar 

  • Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological monographs 54: 187–211.

    Article  Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change, 2007. Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Iversen, T. M., 1979. Laboratory Energetics of Larvae of Sericostoma personatum (Trichoptera). Holarctic Ecology 2: 1–5.

    Google Scholar 

  • Johns, C. V. & L. Hughes, 2002. Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Global Change Biology 8: 142–152.

    Article  Google Scholar 

  • Kingsolver, J. G. & R. B. Huey, 2008. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10: 251–268.

    Google Scholar 

  • Kominoski, J. S. & A. D. Rosemond, 2012. Conservation from the bottom up: forecasting effects of global change on dynamics of organic matter and management needs for river networks. Freshwater Science 31: 51–68.

    Article  Google Scholar 

  • Landeiro, V. L., N. Hamada & A. S. Melo, 2008. Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian “terra firme” streams. Fundamental and Applied Limnology 172: 49–58.

    Article  Google Scholar 

  • Landeiro, V. L., N. Hamada, B. S. Godoy & A. S. Melo, 2010. Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia 649: 355–363.

    Article  Google Scholar 

  • Li, A. O. Y. & D. Dudgeon, 2008. The effects of leaf litter characteristics on feeding and fitness of a tropical stream shredder, Anisocentropus maculatus (Trichoptera: Calamoceratidae). Marine and Freshwater Research 59: 897–901.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. Gonçalves & N. Hamada, 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31: 337–342.

    Article  Google Scholar 

  • Martins, R. T., A. S. Melo, J. F. G. Júnior & N. Hamada, 2015. Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science 34: e10.1086/681086.

    Article  Google Scholar 

  • Mas-Martí, E., A. M. Romaní & I. Muñoz, 2015. Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder. PLoS One 10: e0118520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moline, A. B. & N. L. Poff, 2008. Growth of an invertebrate shredder on native (Populus) and non-native (Tamarix, Elaeagnus) leaf litter. Freshwater Biology 53: 1012–1020.

    Article  Google Scholar 

  • Mooney, H., A. Larigauderie, M. Cesario, T. Elmquist, O. Hoegh-Guldberg, S. Lavorel, G. M. Mace, M. Palmer, R. Scholes & T. Yahara, 2009. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability 1: 46–54.

    Article  Google Scholar 

  • Moretti, M. S., R. Loyola, B. Becker & M. Callisto, 2009. Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630: 199–206.

    Article  CAS  Google Scholar 

  • Navarro, F. K. S. P., R. S. Rezende & J. F. Gonçalves, 2013. Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica 13: 28–33.

    Article  Google Scholar 

  • Nolen, J. A. & R. G. Pearson, 1993. Factors affecting litter processing by Anisocentropus kirramus (Trichoptera: Calamoceratidae) from an Australian tropical rainforest stream. Freshwater Biology 29: 469–479.

    Article  Google Scholar 

  • Novozamsky, J., V. J. G. Houba, R. van Eck & W. van Vark, 1983. A novel digestion technique for multielement plant analysis. Communications in Soil Science and Plant Analysis 14: 239–248.

    Article  CAS  Google Scholar 

  • Park, S. & K. H. Cho, 2003. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process. Korean Journal of Biological Sciences 7: 289–294.

    Article  Google Scholar 

  • Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.

    Article  CAS  Google Scholar 

  • Peterson, C. H. & P. E. Renaud, 1989. Analysis of feeding preference experiments. Oecologia 80: 82–86.

    Article  CAS  PubMed  Google Scholar 

  • Prather, A. L., 2003. Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275: 1–214.

    Article  Google Scholar 

  • Rajashekhar, M. & K. M. Kaveriappa, 2000. Effects of temperature and light on growth and sporulation of aquatic hyphomycetes. Hydrobiologia 441: 149–153.

    Article  Google Scholar 

  • Rincón, J. & I. Martínez, 2006. Food quality and feeding preferences of Phylloicus sp. (Trichoptera:Calamoceratidae). Journal of the North American Benthological Society 25: 209–215.

    Article  Google Scholar 

  • Rumbos, C. I., D. Stamopoulos, G. Georgoulas & E. Nikolopoulou, 2010. Factors affecting leaf litter decomposition by Micropterna sequax (Trichoptera: Limnephilidae). International Review of Hydrobiology 95: 383–394.

    Article  CAS  Google Scholar 

  • Sridhar, K. R. & F. Bärlocher, 1993. Effect of temperature on growth and survival of five aquatic hyphomycetes. Sydowia 45: 377–387.

    Google Scholar 

  • Swan, C. M. & M. A. Palmer, 2006. Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147: 469–478.

    Article  PubMed  Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1978. Size variation and distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.

    Article  CAS  PubMed  Google Scholar 

  • Tuchman, N. C., K. A. Wahtera, R. G. Wetzel & J. A. Teeri, 2003. Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495: 203–211.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Verberk, W. C. E. P. & D. T. Bilton, 2013. Respiratory control in aquatic insects dictates their vulnerability to global warming. Biology Letters 9: 1–4.

    Article  Google Scholar 

  • Villanueva, V. D., R. Albariño & C. Canhoto, 2011. Detritivores feeding on poor quality food are more sensitive to increased temperatures. Hydrobiologia 678: 155–165.

    Article  Google Scholar 

  • Wagner, R., 1990. Influence of temperature, photoperiod and nutrition on growth and consumption of Chaetopteryx villosa (Trichoptera). Holarctic Ecology 13: 247–254.

    Google Scholar 

  • Waldbauer, G. P., 1968. The consumption and utilization of food by insects. Advances in Insect Physiology 5: 229–288.

    Article  Google Scholar 

  • Witkowski, E. T. F. & B. B. Lamont, 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88: 486–493.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Adalberto L. Val for microcosm use, Dr. Ana M.O. Pes for Phylloicus elektoros identification, Dr. Sérgio Nunomura for lyophilizer use, Dr. Manuel A.S. Graça for suggestions during data analysis, and Fernanda Dragan and Jéssica Oliveira for help during the experiment. We also thank Fernanda Dragan and collaborators who are finalizing a detailed description of the microcosms. ASM, JFGJr, and NH received research fellowships (procs. 307479/2011-0, 302957/2014-6 and 306328/2010-0, respectively) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RTM received a fellowship from Programa de Apoio à Fixação de Doutores no Amazonas—FIXAM/AM. CT-Amazônia/CNPq (Proc. 575875/2008-9), Pronex/CNPq/Fapeam—Aquatic insects, CT-Hidro/Climatic Changes/Water Resources/CNPq (Proc. 403949/2013-0) and INCT/ADAPTA (CNPq/FAPEAM)—Amazon projects supported the invertebrate sample collection, laboratory analyses, and microcosm experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato T. Martins.

Additional information

Guest editors: Adalberto L. Val, Gudrun De Boeck, & Sidinei M. Thomaz / Adaptation of Aquatic Biota of the Amazon

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_2689_MOESM1_ESM.pdf

Supplementary material 1 (PDF 496 kb). Fig. S1—Flow diagram of the experimental design. We considered total leaf breakdown as sum of microbial leaf breakdown and shredder leaf breakdown. The values of air temperature and CO2 indicated are the averages registered during the experiment. Chambers were subjected to the following conditions: Control: real-time current conditions of air temperature and CO2 from Manaus (Amazonas, Brazil); Light: increases of ~1.5°C in temperature and ~220 ppm CO2 concentration in relation to the control; Intermediate: increases of ~3.0°C in temperature and ~420 ppm CO2 concentration in relation to the control; Extreme: increase of ~4.5°C in temperature and ~870 ppm CO2 concentration in relation to the control

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.T., Melo, A.S., Gonçalves, J.F. et al. Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia 789, 31–44 (2017). https://doi.org/10.1007/s10750-016-2689-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2689-7

Keywords

Navigation