Skip to main content

Lignin and Cellulose

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Lignin and cellulose are the two most abundant polymers in the biosphere. Conferring toughness and tensile strength to plant tissues, they can account for more than half of the total leaf dry mass and an even larger fraction in wood. The recalcitrance of lignin, in particular, means that lignin concentrations are critical in determining the nutritional quality, palatability and decomposition rates of plant litter. This chapter presents a gravimetric method to quantify lignin and cellulose in plant tissues. Dried and ground plant material is first extracted in acid detergent solution and subsequently dried and weighed before cellulose is hydrolysed with 72% sulphuric acid. The remaining material is dried again, reweighed and combusted to determine the ash content of the litter sample. The contributions of lignin and cellulose to total litter dry mass are calculated as the difference in the litter mass after different procedural steps. Specifically, the cellulose content is the difference in mass before and after cellulose hydrolysis, and the lignin content is the difference between the litter mass remaining after cellulose hydrolysis and the final mass after ignition. The method has proved valuable in establishing strong relationships between litter quality, fungal growth and litter decomposition rates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bärlocher, F. (1985). The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society, 91, 83–94.

    Article  Google Scholar 

  • Berg, B., & McClaugherty, C. (2003). Plant litter – Decomposition, humus formation, carbon sequestration. Berlin: Springer.

    Google Scholar 

  • Chen, L., Dou, J., Ma, Q., Li, N., Wu, R., Bian, H., Yelle, D. J., Vuorinen, T., Fu, S., Pan, X., & Zhu, J. Y. (2017). Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope. Science Advances, 3, e1701735.

    Article  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817.

    Article  Google Scholar 

  • Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). In Agriculture handbook 379 (pp. 1–20). Washington DC: U.S. Department of Agriculture.

    Google Scholar 

  • Graça, M. A. S. (1993). Patterns and processes in detritus-based stream systems. Limnologica, 23, 107–114.

    Google Scholar 

  • Hatfield, R. D., Grabber, J., Ralph, J., & Brei, K. (1999). Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: Some cautionary notes. Journal of Agricultural and Food Chemistry, 47, 628–632.

    Article  CAS  Google Scholar 

  • Hladyz, S., Gessner, M. O., Giller, P. S., Pozo, J., & Woodward, G. (2009). Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology, 54, 957–970.

    Article  CAS  Google Scholar 

  • Kukor, J. J., & Martin, M. M. (1987). Nutritional ecology of fungus-feeding arthropods. In F. Slansky Jr. & J. G. Rodriguez (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates (pp. 791–814). New York: Wiley.

    Google Scholar 

  • Lecerf, A., & Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology, 9, 598–605.

    Article  Google Scholar 

  • Li, N., Pan, X., & Alexander, J. (2016). A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH). Green Chemistry, 18, 5367.

    Article  CAS  Google Scholar 

  • Maharning, A. R., & Bärlocher, F. (1996). Growth and reproduction in aquatic hyphomycetes. Mycologia, 88, 80–88.

    Article  Google Scholar 

  • Martin, M. M. (1987). Acquired enzymes in detritivores. In M. M. Martin (Ed.), Invertebrate-microbial interactions. Ingested fungal enzymes in arthropod biology (pp. 49–72). Ithaca: Comstock Publishing Associates.

    Chapter  Google Scholar 

  • McLellan, T. M., Aber, J. D., & Martin, M. E. (1991). Determination of nitrogen, lignin and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy. Canadian Journal of Forest Research, 21, 1684–1688.

    Article  CAS  Google Scholar 

  • Rong, Q., Sridhar, K. R., & Bärlocher, F. (1995). Food selection in three leaf-shredding stream invertebrates. Hydrobiologia, 316, 173–181.

    Article  CAS  Google Scholar 

  • Ryan, M. G., Melillo, J. M., & Ricca, A. (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Reserch, 20, 166–171.

    Article  Google Scholar 

  • Suberkropp, K. (1992). Interactions with invertebrates. In F. Bärlocher (Ed.), The ecology of aquatic hyphomycetes, Ecological Studies (Vol. 94, pp. 118–133). Berlin: Springer.

    Google Scholar 

  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Gessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gessner, M.O. (2020). Lignin and Cellulose. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_21

Download citation

Publish with us

Policies and ethics