Skip to main content

Radial Diffusion Assay for Tannins

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Tannins are polymeric compounds with sufficient phenolic groups to complex with proteins and other macromolecules. Total concentrations of tannins in leaf litter are often negatively correlated with feeding preferences and digestion efficiencies of consumers, and with microbial decomposition rates. This chapter presents a method to estimate total tannins in leaf litter based on their ability to bind to and precipitate proteins. Tannins are extracted from plant material in aqueous acetone (30% water). A standard protein is dissolved in a thin agar gel spread evenly in a Petri dish. Wells are punched in the gel and known amounts of plant extract added to the wells. The tannins in the plant extract diffuse into the protein-containing agar where they will bind to and precipitate the protein. The resulting phenol-protein complex appears as plaque with an area proportional to the protein-precipitating activity. Thus, the radial diffusion assay directly addresses a key aspect of the biological significance of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asplund, J., Bokhorst, S., & Wardle, D. A. (2013). Secondary compounds can reduce the soil micro-arthropod effect on lichen decomposition. Soil Biology and Biochemistry, 66, 10–16.

    Article  CAS  Google Scholar 

  • Bärlocher, F., Canhoto, C., & Graça, M. A. S. (1995). Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Archiv für Hydrobiologie, 133, 457–470.

    Google Scholar 

  • Coq, S., Souquet, J. M., Meudec, E., Cheynier, V., & Hättenschwiler, S. (2010). Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology, 91, 2080–2091.

    Article  Google Scholar 

  • Cuevas-Reyes, P., Pérez-López, G., Maldonado-López, Y., & González-Rodríguez, A. (2017). Effects of herbivory and mistletoe infection by Psittacanthus calyculatus on nutritional quality and chemical defense of Quercus deserticola along Mexican forest fragments. Plant Ecology, 218, 687–697.

    Article  Google Scholar 

  • Gessner, M. O. (1991). Differences in processing dynamics of fresh and air-dried leaf litter in a stream ecosystem. Freshwater Biology, 26, 387–398.

    Article  CAS  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 78, 1807–1817.

    Article  Google Scholar 

  • Hagerman, A. E. (1987). Radial diffusion method for determining tannin in plant extracts. Journal of Chemical Ecology, 13, 437–449.

    Article  CAS  Google Scholar 

  • Harborne, J. B. (2004). A guide to modern techniques of plant analysis (4th ed.). London: Academic.

    Google Scholar 

  • Harrison, A. F. (1971). The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition. Soil Biology and Biochemistry, 3, 167–172.

    Article  CAS  Google Scholar 

  • Pennings, S. C., Carefoot, T. H., Zimmer, M., Danko, J. P., & Ziegler, A. (2000). Feeding preferences of supralittoral isopods and amphipods. Canadian Journal of Zoology, 78, 1918–1929.

    Article  Google Scholar 

  • Rosset, J., Bärlocher, F., & Oertli, J. J. (1982). Decomposition of conifer needles and leaf litter in two Black Forest and two Swiss Jura streams. Internationale Revue der Gesamten Hydrobiologie, 67, 695–711.

    CAS  Google Scholar 

  • Simpson, S. J., & Raubenheimer, D. (2001). The geometric analysis of nutrient-allelochemical interactions: A case study using locusts. Ecology, 82, 422–439.

    Google Scholar 

  • Solla, A., Milanović, S., Gallardo, A., Bueno, A., Corcobado, T., Cáceres, Y., Morcuende, D., Quesada, A., Moreno, G., & Pulido, F. (2016). Genetic determination of tannins and herbivore resistance in Quercus ilex. Tree Genetics and Genomes, 12, 117.

    Article  Google Scholar 

  • Swain, T. (1979). Tannins and lignins. In G. Rosenthal & D. H. Hanzen (Eds.), Herbivores: Their interaction with secondary plant metabolites (pp. 657–682). New York: Academic.

    Google Scholar 

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Oxford: Blackwell Scientific Publications, Methods in Ecology.

    Google Scholar 

  • Zimmer, M., & Topp, W. (2000). Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 69, 1071–1082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. S. Graça .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graça, M.A.S., Bärlocher, F. (2020). Radial Diffusion Assay for Tannins. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_19

Download citation

Publish with us

Policies and ethics