Skip to main content
Log in

Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The seasonal succession of phytoplankton functional groups (PFGs), their ecological preferences, relationships between environmental variables and PFGs, and ecological status were investigated in the Batman Dam Reservoir, a warm monomictic reservoir, located in the Tigris River basin of Turkey. Altogether 60 species, 19 functional groups, and 10 prevailing functional groups were identified, and prevailing functional groups showed strong seasonal changes. Centric diatoms Cyclotella ocellata (group B) and Aulacoseira granulata (group P) were dominant in the spring, with water mixing and low temperature. Groups F (Elakatothrix gelatinosa, Elakatothrix gelatinosa, and Sphaerocystis schroeteri), J (Pediastrum simplex and Coelastrum reticulatum), G (Eudorina elegans and Volvox aureus), LM (Ceratium and Microcystis), and H1 (Aphanizomenon flos-aquae and Anabaena spiroides) dominated the phytoplankton community from summer to mid-autumn, with thermal stratification. Groups H1 and P became dominant in the late autumn, with the breakdown of stratification. With the deepening of the mixing zone, groups P and T (Mougeotia sp.) were dominant in the winter. The reservoir was meso-eutrophic according to trophic state index values based on total phosphorus (TP), chlorophyll a, Secchi depth and total nitrogen, habitat preferences of PFGs, and diversity indices of phytoplankton. Redundancy analysis (RDA) revealed that NO3–N, SiO2, TP, pH, and water temperature (WT) were the most important environmental factors controlling PFGs in the BDR. Weighted averaging regression results indicated that among PFGs, groups F and T had a narrower tolerance range for WT, pH, and SiO2, while groups G and T had a narrower tolerance range for TP and NO3–N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes N, Antunes SC, Pereira MJ, Gonçalves F (2006) Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol 29:54–64

    Article  Google Scholar 

  • Albay M, Akçaalan R (2003) Factors influencing the phytoplankton steady state assemblages in a drinking-water reservoir (Ömerli Reservoir, Istanbul). Hydrobiologia 502:85–95

    Article  Google Scholar 

  • APHA (1995) Standard methods for examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Baykal T, Açıkgöz Ü, Yıldız K, Bekleyen A (2004) A study on algae in Devegeçidi Dam Lake. Turk J Bot 28:457–472

    Google Scholar 

  • Becker V, Caputo L, Ordonez J, Marce R, Armengol J, Crossetti LO, Huszar VLM (2010) Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res 44:3345–3354

    Article  CAS  Google Scholar 

  • Bergström AK (2010) The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat Sci 72:277–281

    Article  Google Scholar 

  • Cao J, Hou Z, Li Z, Chu Z, Yang P, Zheng B (2018) Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Sci Total Environ 631–632:1127–1137

    Article  CAS  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  • Çelekli A, Öztürk B (2014) Determination of ecological status and ecological preferences of phytoplankton using multivariate approach in a Mediterranean reservoir. Hydrobiologia 740:115–135

    Article  CAS  Google Scholar 

  • Çelekli A, Albay M, Dügel M (2007) Phytoplankton (except Bacillariophyceae) flora of Lake Gölköy (Bolu). Turk J Bot 31:49–65

    Google Scholar 

  • Çelik K, Sevindik TO (2015) The phytoplankton functional group concept provides a reliable basis for ecological status estimation in the Çaygören Reservoir (Turkey). Turk J Bot 39:588–598

    Article  CAS  Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16:51–60

    Article  Google Scholar 

  • Crossetti LO, Becker V, Cardoso LS, Rodrigues LR, Costa LS, Motta-Marques D (2013) Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43:157–163

    Article  Google Scholar 

  • Demir AN, Fakıoğlu Ö, Dural B (2014) Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turk J Bot 38:169–179

    Article  Google Scholar 

  • Grower JP, Chrzanowski TH (2006) Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. J Plankton Res 28:1–17

    Article  Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223

    Article  CAS  Google Scholar 

  • Happey-Wood CM (1988) Ecology of freshwater planktonic green algae. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 175–226

    Google Scholar 

  • Hartley B (1996) An atlas of British diatoms. Biopress Limited, Bristol

    Google Scholar 

  • Hoyer AB, Moreno-Ostos E, Vidal J, Blanco JM, Palomino-Torres RL, Basanta A, Escot C, Rueda FJ (2009) The influence of external perturbations on the functional composition of phytoplankton in a Mediterranean reservoir. Hydrobiologia 636:49–64

    Article  Google Scholar 

  • Huszar V, Kruk C, Caraco N (2003) Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502:97–109

    Article  Google Scholar 

  • Hutchinson GE (1944) Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplankton periodicity and chemical changes in lake waters. Ecology 25:3–26

    Article  CAS  Google Scholar 

  • ISO (1986) Water quality determination of nitrate. In: Part 1: 2,6-dimethylphenol spectrometric method. International Organization for Standardization, Geneva

    Google Scholar 

  • Jarnefelt H (1952) Plankton als Indikator der Trophiegruppen der Seen. Ann Acad Sci Fenn A IV Biol 18:1–29

    Google Scholar 

  • Jiang YJ, He W, Liu WX, Qin N, Ouyang HL, Wang QM, Kong XZ, He QS, Yang C, Yang B, Xu FL (2014) The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol Indic 40:58–67

    Article  CAS  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Juggins S (2007) C2 version 15 user guide software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK

    Google Scholar 

  • Komarek J, Komarkova J (2002) Review of the European Microcystis morphospecies (cyanoprokaryotes) from nature. Czech Phycol 2:1–24

    Google Scholar 

  • Komarek J, Komarkova J (2006) Diversity of Aphanizomenon-like cyanobacteria. Czech Phycol 6:1–32

    Google Scholar 

  • Komarek J, Zapomelova E (2007) Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. part: coiled types. Fottea 7:1–31

    Article  Google Scholar 

  • Krammer K (2002) Diatoms of Europe. Cymbella. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae, Teil 1. Naviculaceae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Kratzer CR, Brezonik PL (1981) A Carlson-type trophic state index for nitrogen in Florida lakes. Water Resour Bull 17:713–715

    Article  CAS  Google Scholar 

  • Maraşlıoğlu F, Gönülol A (2014) Phytoplankton community, functional classification and trophic state ındices of Yedikır Dam Lake (Amasya). J Biol Environ Sci 8:133–141

    Google Scholar 

  • Maraslioglu F, Soylu EN (2017) Relationship of epilithic diatom communities to environmental variables in Yedikır Dam Lake (Amasya, Turkey). Turk J Fish Aquat Sci 17:1347–1356

    Article  Google Scholar 

  • Moreno-Ostos E, Cruz-Pizarro L, Basanta A, George DG (2008) The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquat Ecol 42:115–128

    Article  CAS  Google Scholar 

  • Morris DP, Lewis WM (1988) Phytoplankton nutrient limitation in Colorado Mountain lakes. Freshw Biol 20:315–327

    Article  Google Scholar 

  • Naselli-Flores L (2013) Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: the case of Lake Arancio, Sicily, Italy. Inland Waters 4:15–26

    Article  Google Scholar 

  • Negro AI, De Hoyos C (2005) Relationships between diatoms and the environment in Spanish reservoirs. Limnetica 24:133–144

    Google Scholar 

  • Negro AI, De Hoyos C, Vega JC (2000) Phytoplankton structure and dynamics in Lake Sanabria and Valparaiso reservoir (NW Spain). Hydrobiologia 424:25–37

    Article  Google Scholar 

  • Padedda BM, Sechi N, Lai GG, Mariani MA, Pulina S, Sarria M, Satta CT, Virdis T, Buscarinu P, Luglie A (2017) Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Glob Ecol Conserv 12:21–35

    Article  Google Scholar 

  • Padisak J, Borics G, Grigorszky I, Soroczki-Pinter E (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553:1–14

    Article  Google Scholar 

  • Padisak J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19

    Article  Google Scholar 

  • Pasztaleniec A, Poniewozik M (2010) Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive—a comparison of approaches. Limnologica 40:251–259

    Article  CAS  Google Scholar 

  • Patrick R, Reimer CW (1966) The diatoms of the United States, exclusive of Alaska and Hawaii, vol volume I. Monographs of the Academy of National Sciences, Philadelphia

    Google Scholar 

  • Patrick R, Reimer CW (1975) The diatoms of the United States, exclusive of Alaska and Hawaii, volume II. Part I. Monographs of the Academy of National Sciences, Philadelphia

    Google Scholar 

  • Reynolds CS (1997) In: Kinne O (ed) Vegetation process in the pelagic: a model for ecosystem theory. Excellence in ecology. ECI, Oldendorf

    Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reynolds CS, Huszar VLM, Kruk C, Nasseli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • Rolland A, Bertrand F, Maumy M, Jacquet S (2009) Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res 43:3155–3168

    Article  CAS  Google Scholar 

  • Salmaso N (2002) Ecological patterns of phytoplankton assemblages in Lake Garda: seasonal spatial and historical features. J Limnol 61:95–115

    Article  Google Scholar 

  • Salmaso N, Naselli-Flores L, Padisak J (2015) Functional classifications and their application in phytoplankton ecology. Freshw Biol 60:603–619

    Article  Google Scholar 

  • Schlegel I, Scheffler W (1999) Seasonal development and morphological variability of Cyclotella ocellata (Bacillariophyceae) in the eutrophic Lake Dagow (Germany). Int Rev Hydrobiol 84:469–478

    CAS  Google Scholar 

  • Sevindik TO (2010) Phytoplankton composition of Çaygören Reservoir, Balikesir-Turkey. Turk J Fish Aquat Sci 10:295–304

    Google Scholar 

  • Sevindik TO, Çelik K, Naselli-Flores L (2017) Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir. Ann Limnol Int J Limnol 53:129–141

    Article  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue- green algae in lake phytoplankton. Science 221:669–671

    Article  CAS  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Soylu EN, Gönülol A (2010) Functional classification and composition of phytoplankton in Liman Lake. Turk J Fish Aquat Sci 10:53–60

    Article  Google Scholar 

  • Soylu EN, Maraşlıoğlu F, Gönülol A (2007) Phytoplankton seasonality of a shallow turbid lake. Algol Stud 123:95–110

    Article  CAS  Google Scholar 

  • Teneva I, Gecheva G, Cheshmedjiev S, Stoyanov P, Mladenov R, Belkinova D (2014) Ecological status assessment of Skalenski Lakes (Bulgaria). Biotechnol Biotechnol Equip 28:82–95

    Article  Google Scholar 

  • Teneva I, Mladenov R, Belkinova D, Dimitrova-Dyulgerova I, Dzhambazov B (2010) Phytoplankton community of the drinking water supply reservoir Borovitsa (South Bulgaria) with an emphasis on cyanotoxins and water quality. Cent Eur J Biol 5:231–239

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 45). Microcomputer Power, Ithaca

    Google Scholar 

  • Tilman D, Kiesling R, Sterner R, Kilham SS, Johnson FA (1986) Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch Hydrobiol 106:473–485

    Google Scholar 

  • Udovic MG, Zutinic P, Borojevic KK, Plenkovic-Moraj A (2015) Co-occurrence of functional groups in phytoplankton assemblages dominated by diatoms, chrysophytes and dinoflagellates. Fundam Appl Limnol 187:101–111

    Article  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Varol M (2016) External morphological variations and temporal distribution of the dinoflagellate Ceratium hirundinella in two dam reservoirs in the Tigris River basin (Turkey). Turk J Bot 40:112–119

    Article  CAS  Google Scholar 

  • Varol M, Şen B (2016) New records of Euglenophyceae for Turkish freshwater algae. Turk J Fish Aquat Sci 16:219–225

    Article  Google Scholar 

  • Varol M, Şen B (2018) Abiotic factors controlling the seasonal and spatial patterns of phytoplankton community in the Tigris River, Turkey. River Res Appl 34:13–23

    Article  Google Scholar 

  • Varol M, Gokot B, Bekleyen A, Şen B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21

    Article  CAS  Google Scholar 

  • Varol M, Blanco S, Alpaslan K, Karakaya G (2018) New records and rare taxa for the freshwater algae of Turkey from the Tatar Dam Reservoir (Elazığ). Turk J Bot 42:533–542

    Article  Google Scholar 

  • Wang XL, Lu YL, He GZ, Han JY, Wang TY (2007) Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: a 5-year study. J Environ Sci 19:920–927

    Article  CAS  Google Scholar 

  • Wang L, Cai Q, Tan L, Kong L (2011) Phytoplankton development and ecological status during a cyanobacterial bloom in a tributary bay of the Three Gorges Reservoir, China. Sci Total Environ 409:3820–3828

    Article  CAS  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America. Academic, Boston

    Google Scholar 

  • Wisniewska M, Luscinska M (2012) Long-term changes in the phytoplankton of Lake Charzykowskie. Oceanol Hydrobiol Stud 41:90–98

    Article  Google Scholar 

  • Xiao LJ, Wang T, Hu R, Han BP, Wang S, Qian X, Padisak J (2011) Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res 45:5099–5109

    Article  CAS  Google Scholar 

  • Xu Y, Li AJ, Qin J, Li Q, Ho JG, Li H (2017) Seasonal patterns of water quality and phytoplankton dynamics in surface waters in Guangzhou and Foshan, China. Sci Total Environ 590–591:361–369

    Article  CAS  Google Scholar 

  • Zhang NN, Zang SY (2015) Characteristics of phytoplankton distribution for assessment of water quality in the Zhalong Wetland, China. Int J Environ Sci Technol 12:3657–3664

    Article  CAS  Google Scholar 

  • Zutinic P, Udovic MG, Borojevic KK, Plenkovic-Moraj A, Padisak J (2014) Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740:147–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are given to the editor Prof. Philippe Garrigues and the three anonymous reviewers for their constructive comments and suggestions for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Memet Varol.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varol, M. Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables. Environ Sci Pollut Res 26, 20439–20453 (2019). https://doi.org/10.1007/s11356-019-05354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05354-0

Keywords

Navigation