Skip to main content
Log in

Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study explored the interactions of phytoplankton species during the invasion of Ceratium furcoides and the environmental variables that contributed to its establishment and ecological success in a shallow eutrophic reservoir (Garças Reservoir, southeast Brazil), which has been monitored monthly for 20 years (1997–2017). The Ceratium furcoides invasion in September 2014 was preceded by disturbance events (macrophyte removal and a historical drought period), which disrupted the dominance of cyanobacteria by modifying resource availability (high water transparency and soluble reactive phosphorus concentrations) and recruiting other species. Ceratium blooms at the water surface were preceded by high abundance near the bottom, suggesting the importance of the propagule bank. However, the pattern of Ceratium-Microcystis coexistence that is usually recorded in temperate lakes was not observed. Instead, Ceratium replaced Cylindrospermopsis raciborskii in mixing periods with high light and nitrogen availabilities, significantly influencing the abundance of Trachelomonas spp. Flagellated forms became dominant in the Garças Reservoir, due to the higher water transparency and relatively lower water-column stability, and alternative states between Ceratium-Trachelomonas in mixing periods and Microcystis-Cryptomonas in stratified periods have been repeated. Since then, cyanobacterial dominance ceased, and the “skillful” Ceratium apparently has come to stay, influencing interactions among phytoplankton species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with reference from Bicudo et al. (2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almanza, V., C. E. M. Bicudo, O. Parra & R. Urrutia, 2016. Características morfológicas y limnológicas de las floraciones de Ceratium furcoides (Dinophyta) en un lago somero de Chile Central. Limnetica 35(1): 253–268.

    Google Scholar 

  • Becker, V., L. S. Cardoso & V. L. M. Huszar, 2009. Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil, during an autumnal stratification period. Aquatic Ecology 43: 371–381.

    Article  Google Scholar 

  • Bicudo, C. E. M., C. F. Carmo, D. C. Bicudo, A. C. S. Pião, C. M. Santos & M. R. M. Lopes, 2002. Morfologia e morfometria de três reservatórios do PEFI. In Bicudo, D. C., M. C. Forti & C. E. M. Bicudo (eds), Parque Estadual das Fontes do Ipiranga (PEFI): Unidade de Conservação que Resiste à Urbanização de São Paulo. Editora Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo: 143–160.

    Google Scholar 

  • Bicudo, D. C., B. M. Fonseca, L. M. Bini, L. O. Crossetti, C. E. M. Bicudo & T. Araújo-Jesus, 2007. Undesirable side-effects of water hyacinth control in a shallow tropical Reservoir. Freshwater Biology 51: 1120–1133.

    Article  Google Scholar 

  • Borics, G., G. Várbíró & J. Padisák, 2013. Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia 711: 1–7.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

    Google Scholar 

  • Campanelli, J., J. G. Tundisi, D. S. Abe, C. Sidagis-Galli & T. Matsumura-Tundisi, 2017. Record of the occurrence of dinoflagellate Ceratium furcoides in a fish farming lake located in the countryside of São Carlos (SP, Brazil). Brazilian Journal of Biology 77(2): 426–427.

    Article  CAS  Google Scholar 

  • Cassol, A. P. V., W. Pereira Filho, M. A. Oliveira, A. L. Domingues, F. S. Correa & G. A. Buriol, 2014. First record of a bloom of the invasive species Ceratium furcoides (F. S. Levander) Langhans 1925 in Rio Grande do Sul state, Brazil. Brazilian Journal of Biology 74(2): 515–517.

    Article  CAS  Google Scholar 

  • Cavalcante, K. P., L. S. Cardoso, R. Sussella & V. Becker, 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia 771: 265–280.

    Article  CAS  Google Scholar 

  • Cole, G., 1983. Textbook of Limnology, 3rd ed. The C.V. Mosby Co., London.

    Google Scholar 

  • Conti, J. B. & S. A. Furlan, 2003. Geoecologia: o clima, os solos e a biota. In Ross, J. L. (ed.), Geografia do Brasil. Editora da Universidade de São Paulo, São Paulo: 67–207.

    Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invisibility. Journal of Ecology 88(3): 528–534.

    Article  Google Scholar 

  • De Bernardi, R., 1981. Biotic interactions in freshwater and effects on community structure. Bolletino di Zoologia 48: 353–371.

    Article  Google Scholar 

  • Dokulil, M. & K. Teubner, 2003. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes: do they occur? Hydrobiologia 502: 65–72.

    Article  Google Scholar 

  • Donagh, M. E. M., M. A. Casco & M. C. Claps, 2005. Colonization of a Neotropical Reservoir (Córdoba, Argentina) by Ceratium hirundinella (O. F. Müller) Bergh. Annales de Limnologie—International. Journal of Limnology 41(4): 291–299.

    Article  Google Scholar 

  • Gil, C. B., J. J. R. Restrepo, A. Boltovskoy & A. Vallejo, 2012. Spatial and temporal change characterization of Ceratium furcoides (Dinophyta) in the equatorial reservoir Riogrande 2. Colombia. Acta Limnologica Brasiliensia 24(2): 207–219.

    Article  Google Scholar 

  • Golterman, H. L. & R. S. Clymo, 1971. Methods for Chemical Analysis of Freshwaters. Blackwell Scientific Publications, Oxford and Edinburgh.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Chemical Analysis of Freshwaters. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Grace, J. B., S. M. Scheiner, & D. R. Schoolmaster Jr, 2015. Structural equation modeling: building and evaluating causal models. In Fox, G. A., S. Negrete-Yanlelevich & V. J. Sosa (eds), Ecological statistics: contemporary theory and application. Oxford University Press, Oxford: 168–199.

    Chapter  Google Scholar 

  • Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95(882): 137–145.

    Article  Google Scholar 

  • Jati, S. A., L. C. Rodrigues, J. C. Bortolini, A. C. M. Paula, G. A. Moresco, L. M. Reis, B. F. Zanco & S. Train, 2014. First record of the occurrence of Ceratium furcoides (Levander) Langhans (Dinophyceae) in the Upper Paraná River Floodplain (PR/MS) Brazil. Brazilian Journal of Biology 74(3): S235–S236.

    Article  CAS  Google Scholar 

  • Kasprzak, P., T. Shatwell, M. O. Gessner, T. Gonsiorczyk, G. Krillin, G. Selmeczy & J. Padisák, 2017. Extreme weather event triggers cascade towards extreme turbidity in a clear-water lake. Ecosystems. https://doi.org/10.1007/s10021-017-0121-4.

    Article  Google Scholar 

  • Korneva, L. G., 2014. Invasions of alien species of planktonic microalgae into the fresh waters of Holarctic (review). Russian Journal of Biological Invasions 5(2): 65–81.

    Article  Google Scholar 

  • Krivtsov, V., E. G. Bellinger & D. C. Sigee, 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology 39: 123–134.

    Article  CAS  Google Scholar 

  • Lefcheck, J. S., 2016. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7(5): 573–579.

    Article  Google Scholar 

  • Legendre, P. & L. F. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lewis Jr., W. M., 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences 40: 1779–1787.

    Article  Google Scholar 

  • Lindström, K., 1992. Ceratium in Lake Erken: vertical distribution, migration and form variation. Nordic Journal of Botany 12: 541–556.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Titus Wilson & Son Ltd., Kendall.

    Google Scholar 

  • Marengo, J. A., C. A. Nobre, M. E. Seluchi, A. Cuartas, L. M. Alves, E. M. Mendiondo, G. Obregón & G. Sampaio, 2015. A seca e a crise hídrica de 2014–2015 em São Paulo. Revista USP 106: 31–44.

    Article  Google Scholar 

  • Matsumura-Tundisi, T., J. G. Tundisi, A. P. Luzia & R. M. Degani, 2010. Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings Reservoir, São Paulo State, Brazil. Brazilian Journal of Biology 70: 825–829.

    Article  CAS  Google Scholar 

  • McCune, B., M. J. Mefford, 2011. PC-ORD Multivariate Analysis of Ecological Data. Version 6.0 MjM Software. Gleneden Beach, Oregon.

  • Meichitry de Zaburlín, N., A. Boltovskoy, C. C. Rojas & R. M. Rodriguez, 2014. Primer registro del dinoflagelado invasor Ceratium furcoides (Levander) Langhans 1925 en la Argentina y su distribución en el área de influencia del Embalse Yacyretá (río Paraná, Argentina-Paraguay). Limnetica 33: 153–160.

    Google Scholar 

  • Meichitry de Zaburlín, N., E. Vogler, M. J. Molina & V. M. Llano, 2016. Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America. Journal of Phycology 52: 200–208.

    Article  Google Scholar 

  • Morales, E. A., 2016. Floración de Ceratium furcoides (Levander) Langhans (Dinoflagellata, Dinophyceae) en la represa de La Angostura, Cochabamba,Bolivia. Acta Nova 7(4): 389–398.

    Google Scholar 

  • Moreira, R. A., O. Rocha, R. M. Santos, R. Laudares-Silva, E. S. Dias & E. M. Eskinazi-Sant’Anna, 2015. First record of Ceratium furcoides (Dinophyta), an invasive species, in a temporary high-altitude lake in the Iron Quadrangle (MG, Southeast Brazil). Brazilian Journal of Biology 75(1): 98–103.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis eco-morphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Nishimura, P. Y., M. P. Pompêo & V. Moschini-Carlos, 2015. Invasive dinoflagellate Ceratium furcoides (Levander) Langhans in two linked tropical reservoirs. In Pompêo, M., V. Moschini-Carlos, P. Y. Nishimura, S. C. Silva & J. C. L. Doval (eds), Ecologia de reservatórios e interfaces. Instituto de Biociências da Universidade de São Paulo, São Paulo: 132–142.

    Google Scholar 

  • Oliveira, H. S. B., A. N. Moura & M. K. Cordeiro-Araújo, 2011. First record of Ceratium Schrank, 1973 (Dinophyceae, Ceratiaceae) in freshwater ecosystems in the semiarid region of Brazil. Check List 7: 626–628.

    Article  Google Scholar 

  • Padisák, J., 1985. Population dynamics of the dinoflagellate Ceratium hirundinella in the largest shallow lake of Central Europe, Lake Balaton, Hungary. Freshwater Biology 15: 43–52.

    Article  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie/Suppl 107: 563–593.

    Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653: 45–67.

    Article  Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton—traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pérez-Martínez, C. & P. Sánchez-Castillo, 2002. Winter dominance of Ceratium hirundinella in a southern north-temperate reservoir. Journal of Plankton Research 24: 89–96.

    Article  Google Scholar 

  • Pinheiro, J, D. Bates, S. DebRoy, D. Sarkar, D. & R Core Team, 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131 (https://CRAN.R-project.org/package=nlme).

  • Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 134–174.

    Google Scholar 

  • R Core Team, 2017. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rengefors, K., S. Gustafsson & A. Ståhl-Delbanco, 2004. Factors regulating the recruitment of cyanobacterial and eukaryotic phytoplankton from littoral and profundal sediments. Aquatic Microbial Ecology 36: 213–226.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1996. Phosphorus recycling in lakes: evidence from large enclosures for the importance of shallow sediments. Freshwater Biology 35: 623–645.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology. Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Santos-Wisniewski, M. J., L. C. Silva, I. C. Leone, R. Laudares-Silva & O. Rocha, 2007. First record of the occurrence of Ceratium furcoides (Levander) Langhans 1925, and invasive species in the hydroelectricity power plant Furnas Reservoir, MG, Brazil. Brazilian Journal of Biology 67(4): 791–793.

    Article  CAS  Google Scholar 

  • Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.

    Article  CAS  Google Scholar 

  • Selmeczy, G. B., K. Tapolczai, L. Krienitz, P. Casper & J. Padisák, 2016. Spatial- and niche segregation of DCM forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia 764: 229–240.

    Article  CAS  Google Scholar 

  • Shipley, B., 2013. The AIC model selection method applied to path analytic models compared using a d-separation tests. Ecology 94: 560–564.

    Article  Google Scholar 

  • Silva, L. C., I. C. Leone, M. J. Santos-Wisniewski, A. C. Peret & O. Rocha, 2012. Invasion of the dinoflagellate Ceratium furcoides (Levander) Langhans 1925 at tropical reservoir and its relation to environmental variables. Biota Neotropica 12: 1–8.

    Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson´s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–8.

    Article  Google Scholar 

  • Soriano, E., L. R. Londe, L. T. Di Gregorio, M. P. Coutinho & L. B. L. Santos, 2016. Water crisis in São Paulo evaluated under the disaster’s point of view. Ambiente & Sociedade 19(41): 21–42.

    Article  Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55(Suppl. 1): 152–174.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Fisheries Research Board of Canada Bulletin 125: 1–185.

    Google Scholar 

  • Tilman, D., M. Mattson & S. Langer, 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnology and Oceanography 26: 1020–1033.

    Article  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervolkomnung der quantitative Phytoplankton-Methodik Mitteilungen der internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorous in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Vidaković, D., J. Krizmanić, G. Subakov-Simić & V. Karadžić, 2016. Distribution of invasive species Actinocyclus normanii (Hemidiscaceae, Bacillariophyta) in Serbia. Studia Botanica Hungarica 47(2): 201–212.

    Article  Google Scholar 

  • Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo and to CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico for providing several funds and grants over these years. DCB and CEMB thank CNPq (Conselho Nacional de Desenvolvimento Científico) for Research Fellowships (310404/2016-9 and 303876/2004-2). We are profoundly grateful for the valuable support of undergraduate and graduate students, as well as the technicians for their continuous support in the field and the laboratory over these many years. We also thank Yukio Hayashi da Silva for improving the illustration of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane Oliveira Crossetti.

Additional information

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crossetti, L.O., Bicudo, D.C., Bini, L.M. et al. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia 831, 71–85 (2019). https://doi.org/10.1007/s10750-018-3607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3607-y

Keywords

Navigation