Skip to main content
Log in

Rehabilitation of shallow lakes: time to adjust expectations?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Shallow lake managers seek strategies to improve water quality and ecological features of these habitats, but lake responses are unpredictable and factors responsible for changes are often unclear. We summarized results of eight whole-lake rehabilitation projects in Minnesota, USA, an area with many shallow waters highly impacted by anthropogenic activities. To assess lake responses, we compared characteristics of managed sites to those of other regional shallow lakes manifesting clear- or turbid-state conditions. Managed lakes showed modest similarity to clear-water reference lakes in terms of phytoplankton (as chlorophyll a), nutrients, and submerged aquatic plants. Responses of aquatic invertebrate communities were more equivocal, with relatively little similarity to clear-water sites following management. These patterns indicate that these lakes either failed to undergo transitions to clear-water states, or that clear-water conditions did not persist throughout the 2–3 year period following treatment and prior to our evaluation. We believe these results show responses of shallow lakes that have been pushed beyond boundaries where they maintain sufficient natural resilience to resist local stressors. This means that shallow lake rehabilitation efforts will not always succeed and that, when improvements occur, management may need to be repeated to maintain favorable ecological conditions in highly modified landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA, 1994. Standard Methods for the Examination of Waste and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arnold, T. W., 2010. Uninformative parameters and model selection using Akaike’s information criterion. Journal of Wildlife Management 74: 1175–1178.

    Article  Google Scholar 

  • Baho, D. L., U. N. Tavşanoğlu, M. Šorf, K. Stefanidis, S. Drakare, U. Scharfenberger, H. Agasild, M. Beklioğlu, J. Hejzlar, R. Adrian, E. Papastergiadou, P. Zingel, M. Søndergaard, E. Jeppesen & D. G. Angeler, 2015. Macroecological patterns of resilience inferred from a multinational, synchronized experiment. Sustainability 7: 1142–1160.

    Article  Google Scholar 

  • Bajer, P. G. & P. W. Sorenson, 2015. Effects of common carp on phosphorus concentrations, water clarity, and vegetation density: a whole system experiment in a thermally stratified lake. Hydrobiologia 746: 303–311.

    Article  CAS  Google Scholar 

  • Baker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Article  Google Scholar 

  • Bates, D. & M. Maechler, 2012. lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. Available at http://cran.r-project.org/web/packages/lme4/index.html.

  • Bayley, S. E., A. S. Wong & J. E. Thompson, 2013. Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33: 17–28.

    Article  Google Scholar 

  • Bernes, C., S. R. Carpenter, A. Gardmark, P. Larsson, L. Persson, C. Skov, J. D. M. Speed & E. Van Donk, 2015. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environmental Evidence 4: 7.

    Article  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Cahoon, W. E., 1953. Commercial carp removal at Lake Mattamusket, North Carolina. Journal of Wildlife Management 17: 312–317.

    Article  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Carpenter, S. R., D. Ludwig & W. A. Brock, 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications 9: 751–771.

    Article  Google Scholar 

  • Carpenter, S., B. Walker, J. M. Anderies & N. Abel, 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4: 765–781.

    Article  Google Scholar 

  • Cobbaert, D., A. S. Wong & S. E. Bayley, 2015. Resistance to drought affects persistence of alternative regimes in shallow lakes of the Boreal Plains (Alberta, Canada). Freshwater Biology 10: 2084–2099.

    Article  Google Scholar 

  • Chow-Fraser, P., 2005. Ecosystem response to changes in water level of Lake Ontario marshes: lessons from the restoration of Cootes Paradise Marsh. Hydrobiologia 539: 189–204.

    Article  Google Scholar 

  • Coops, H. & S. H. Hosper, 2003. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake and Reservoir Management 18: 292–297.

    Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuation in shallow lake ecosystems-workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Crivelli, A. J., 1983. The destruction of aquatic vegetation by carp. Hydrobiologia 106: 37–41.

    Article  Google Scholar 

  • Deppe, E. R., & R. C. Lathrop, 1992. A comparison of two rake sampling techniques for sampling aquatic macrophytes. Wisconsin Department of Natural Resources Research and Management Findings No. 32.

  • Euliss, N. H., J. W. LaBaugh, L. H. Fredrickson, D. M. Mushet, M. K. Laubhan, G. A. Swanson, T. C. Winter, D. O. Rosenberry & R. D. Nelson, 2004. The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24: 448–458.

    Article  Google Scholar 

  • Faraway, J. J., 2006. Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman & Hall, New York, NY.

    Google Scholar 

  • Gyllström, M., L. A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, E. K. Irvine, K. Kairesalo, R. Kornijów, M. Miracle, M. Nykänen, T. Nõges, S. Romo, Susana D. Stephen, E. van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology & Oceanography 50: 2008–2021.

    Article  Google Scholar 

  • Hansel-Welch, N., M. G. Butler, T. J. Carlson & M. A. Hanson, 2003. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquatic Botany 75: 323–337.

    Article  Google Scholar 

  • Hanson, M. A. & M. G. Butler, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 1180–1188.

    Article  Google Scholar 

  • Hanson, M. A., K. D. Zimmer, M. G. Butler, B. A. Tangen, B. R. Herwig & N. H. Euliss, 2005. Biotic interactions as determinants of ecosystem structure in prairie wetlands: an example using fish. Wetlands 25: 764–775.

    Article  Google Scholar 

  • Hanson, M. A., B. R. Herwig, K. D. Zimmer, J. Fieberg, S. R. Vaughn, R. G. Wright & J. A. Younk, 2012. Comparing effects of lake- and watershed-scale influences on communities of aquatic invertebrates in shallow lakes. PLoS One 7(9): e44644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herwig, B. R., K. D. Zimmer, M. A. Hanson, M. L. Konsti, J. A. Younk, R. W. Wright, S. R. Vaughn & M. D. Haustein, 2010. Factors influencing fish distributions in shallow lakes in prairie and prairie-parkland region of Minnesota, USA. Wetlands 30: 609–619.

    Article  Google Scholar 

  • Hobbs, W. O., J. M. Ramstack Hobbs, T. LaFrancois, K. D. Zimmer, K. M. Theissen, M. B. Edlund, N. Michelutti, M. G. Butler, M. A. Hanson & T. J. Carlson, 2012. A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecological Applications 22: 1483–1496.

    Article  PubMed  Google Scholar 

  • Hobbs, W. O., K. M. Theissen, S. M. Hagen, C. W. Bruchu, C. Ben Czeck, J. M. Hobbs & K. D. Zimmer, 2014. Persistence of clear-water, shallow-lake ecosystems: the role of protected areas and stable aquatic food webs. Journal of Paleolimnology 51: 405–420. doi:10.1007/s10933-013-9763-1.

    Article  Google Scholar 

  • Jackson, D. A. & H. H. Harvey, 1989. Biogeographic associations in fish assemblages: local vs. regional processes. Ecology 70: 1472–1484.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.

    Article  Google Scholar 

  • McCauley, L. A., M. J. Anteau, M. Post van der Burg & M. T. Wiltermuth, 2015. Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere 6: 92.

    Article  Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MJM Software Design, Gleneden Beach, CA.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data, version 4. MjM Software Design, Gleneden Beach, CA.

    Google Scholar 

  • Meronek, T. G., P. M. Bouchard, E. R. Buckner, T. M. Burri, K. K. Demmerly, D. C. Hatleli, R. A. Klumba, S. H. Schmidt & D. W. Coble, 1996. A review of fish control projects. North American Journal of Fisheries Management 16: 63–74.

    Article  Google Scholar 

  • Meijer, M., I. de Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hyrdrobiologia 408(409): 13–30.

    Article  Google Scholar 

  • Moss, B., J. Madgwick & G. Phillips, 1996. Guide to the Restoration of Nutrient-Enriched Shallow Lakes. The Broads Authority, Norwich.

    Google Scholar 

  • Murkin, H. R., P. G. Abbott & J. A. Kadlec, 1983. A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshwater Invertebrate Biology 2: 99–106.

    Article  Google Scholar 

  • Murkin, H. R. & L. C. M. Ross, 2000. Invertebrates in prairie wetlands. In Murkin, H. R., A. G. van der Valk & W. R. Clark (eds), Prairie Wetland Ecology. Iowa State University Press, Ames IA: 201–248.

    Google Scholar 

  • Noordhuis, R., B. G. van Zuidam, E. T. Peeters & G. J. van Geest, 2015. Further improvements in water quality of the Dutch Borderlakes: two types of clear states at different nutrient levels. Aquatic Ecology. doi:10.1007/s10452-015-9521-8.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a “op-down” view. Canadian Journal of Fisheries and Aquatic Sciences 45: 361–379.

    Article  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American geographers 77: 118–125.

    Article  Google Scholar 

  • Picket, S. T., 1989. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-Term Studies in Ecology. Springer, New York, NY: 110–135.

    Chapter  Google Scholar 

  • Potthoff, A. J., B. R. Herwig, M. A. Hanson, K. D. Zimmer, M. G. Butler, J. R. Reed, B. G. Parsons & M. C. Ward, 2008. Cascading food-web effects of piscivore introductions in shallow lakes. Journal of Applied Ecology 45: 1170–1179.

    Google Scholar 

  • R Development Core Team, 2014. The R Project for Statistical Computing. Available at http://www.R-project.org.

  • Ramstack, J. M., S. C. Fritz & D. R. Engstrom, 2004. Twentieth century water quality trends in Minnesota lakes compared with presettlement variability. Canadian Journal of Fisheries and Aquatic Sciences 61: 561–576.

    Article  Google Scholar 

  • Ramstack Hobbs, J. M., W. O. Hobbs, M. B. Edlund, K. D. Zimmer, K. M. Theissen, N. Hoidal, L. M. Domine, M. A. Hanson, B. R. Herwig, & J. B. Cotner. In Press. The legacy of large regime shifts in shallow lakes. Ecological Applications.

  • Raftery, A. E., 1995. Bayesian model selection in social research. Sociological Methodology 25: 111–163.

    Article  Google Scholar 

  • Rahel, F. J., 1984. Factors structuring fish assemblages along a bog lake successional gradient. Ecology 65: 1276–1289.

    Article  Google Scholar 

  • Robel, R. J., 1961. The effect of carp populations on the production of waterfowl food plants on a western waterfowl marsh. Transactions of the North American Wildlife Natural Resource Conference 26: 147–159.

    Google Scholar 

  • Robinson, C. L. & W. M. Tonn, 1989. Influence of environmental factors and piscivory in structuring fish assemblages of small Alberta lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 81–89.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folk & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., 2004. Ecology of Shallow Lakes. Kluver Academic Publishers, Dordrecht.

    Book  Google Scholar 

  • Scheffer, M., S. Barrett, S. R. Carpenter, C. Folke, A. J. Green, M. Holmgren, T. P. Hughes, S. Kosten, I. A. van de Leemput, D. C. Nepstad, E. H. van Nes, E. T. Peeters & B. Walker, 2015. Creating a safe operating space for iconic ecosystems. Science 347: 1317–1319.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase – making it stable. Hydrobiologia 200(201): 13–27.

    Article  Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Round Lake, Minnesota – the first two years. Freshwater Biology 14: 371–383.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2005. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506/509: 135–145.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. van Nex, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • Squires, L. & A. G. van der Valk, 1992. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canadian Journal of Botany 70: 1860–1867.

    Article  Google Scholar 

  • Swanson, G. A., 1978. A plankton sampling device for shallow wetlands. The Journal of Wildlife Management 78: 670–672.

    Article  Google Scholar 

  • Taper, M. L., 2004. Model selection from many candidates. In Taper, M. L. & S. R. Lele (eds), The Nature of Scientific Evidence: Statistical, Philosophical, and Empirical Considerations. University of Chicago Press, Chicaco, IL: 488–524.

    Chapter  Google Scholar 

  • Tonn, W. M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149–1166.

    Article  Google Scholar 

  • Van der Valk, A. G. & C. B. Davis, 1978. The role of the seed bank in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.

    Article  Google Scholar 

  • Van der Valk, A. G., 2005. Water-level fluctuations in North American prairie wetlands. Hydrobiologia 539: 171–188.

    Article  Google Scholar 

  • Wantzen, K. M., K. O. Rothhaupt, M. Mörtl, M. Cantonati, L. G. Tóth & P. Fisher, 2008. Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613: 1–4.

    Article  Google Scholar 

  • White, M. S., M. A. Xenopoulos, K. Hogsden, R. A. Metcalfe & P. J. Dillon, 2008. Natural lake level fluctuation and associated concordance with water quality and aquatic communities within small lakes of the Laurentian Great Lake region. Hydrobiologia 613: 21–31.

    Article  CAS  Google Scholar 

  • Weissgerber, T. L., N. M. Milic, S. J. Winham & V. D. Garovic, 2015. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol 13(4): e1002128. doi:10.1371/journal.pbio.1002128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilcox, D. A. & J. E. Meeker, 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12: 192–203.

    Article  Google Scholar 

  • Zimmer, K. D., M. A. Hanson & M. G. Butler, 2001. Effects of fathead minnow colonization and removal on a prairie wetland ecosystem. Ecosystems 4: 346–357.

    Article  Google Scholar 

  • Zimmer, K. D., M. A. Hanson, B. R. Herwig & M. L. Konsti, 2009. Thresholds and stability of alternative regimes in shallow Prairie-Parkland lakes of central North America. Ecosystems 12: 843–852.

    Article  Google Scholar 

  • Zimmer, K. D., M. A. Hanson & D. A. Wrubleski, 2016. Invertebrates in permanent wetlands (long-hydroperiod marshes and shallow lakes). In Batzer, D. & D. Boix (eds), Invertebrates in Freshwater Wetlands. Springer International Publishing, Switzerland: 251–286.

    Chapter  Google Scholar 

Download references

Acknowledgments

Many graduate and undergraduate students assisted with field and laboratory activities and tasks were often completed under difficult conditions. We especially thank Winston Allen, Cynthia Kuettel, Stefan Bischof, Douglas Galvas, Luke Ginger, Ariel Gittens, Jordan Goetting, Adam Johannsen, LaToya Kissoon, Kristine Maurer, Luke Nolby, Josh Norenberg, Jonathon Gustafson, Thomas Langer, Elisabeth McHale, Dustin Potter, Brandon Palesh, and Lauren Reuss. Research funding was provided by the Wildlife and Fisheries Research Units, Minnesota Department of Natural Resources, the Minnesota Environment and Natural Resources Trust Fund, and the University of St. Thomas. We also appreciate the cooperation of landowners who granted access to private property. Earlier drafts of this paper were improved considerably by review and comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hanson.

Additional information

Handling editor: Chris Joyce

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, M.A., Herwig, B.R., Zimmer, K.D. et al. Rehabilitation of shallow lakes: time to adjust expectations?. Hydrobiologia 787, 45–59 (2017). https://doi.org/10.1007/s10750-016-2865-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2865-9

Keywords

Navigation