Skip to main content

Space-for-Time Substitution as an Alternative to Long-Term Studies

  • Chapter
Long-Term Studies in Ecology

Abstract

This chapter analyzes the benefits and shortcomings of inferring a temporal trend from a study of different aged sites. This technique, called space-for-time substitution, assumes that spatial and temporal variation are equivalent. Although this assumption has been challenged, studies continue to rely on space-for-time substitution due to necessity or convenience.

Time which you can do nothing with. You can’t liquefy it, put it in a jug and pour it out like rendered cheese. As it is like the dry snow of the high latitudes, you can’t take it into your hands and mould it into snow balls to pelt against your own image in a looking glass.

Jack B. Yeats

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D. (1979). Foliage-height profiles and succession in northern hardwood forests. Ecology 60:18–5.

    Google Scholar 

  • Armesto, J.J. and S.T.A. Pickett (1985). Experimental studies of disturbance in oldfield plant communities: Impact on species richness and abundance. Ecology 66:230–5.

    Google Scholar 

  • Auclair, A.N. and G. Goff (1971). Diversity relations of upland forests in the Western Great Lakes area. Am. Nat. 105:499–5.

    Google Scholar 

  • Austin, M.P. (1977). Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35:165–5.

    Google Scholar 

  • Barber, R.T. and R.L. Smith (1981). Coastal upwelling ecosystems. In: Analysis of Marine Ecosystems (A.R. Longhurst, ed.). Academic Press, New York, pp. 31–68.

    Google Scholar 

  • Bard, G. (1952). Secondary succession on the Piedmont of New Jersey. Ecol. Monogr. 22:195–5.

    Google Scholar 

  • Bazzaz, F.A. (1968). Succession on abandoned fields in the Shawnee Hills, southern Illinois. Ecology 49:924–5.

    Google Scholar 

  • Bazzaz, F.A. (1975). Plant species diversity in oldfield ecosystems in southern Illinois. Ecology 56:485–5.

    Google Scholar 

  • Bazzaz, F.A. (1979). The physiological ecology of succession. Annu. Rev. Ecol. Syst. 10:351–5.

    Google Scholar 

  • Beckwith, S.L. (1954). Ecological succession on abandoned farm land and its relationship to wildlife management. Ecol. Monogr. 24:349–5.

    Google Scholar 

  • Bilby, R.E. and G.E. Likens (1980). Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61:1107–5.

    Google Scholar 

  • Bjorkbom, J.C. and R.G. Larson (1977). The Tionesta Scenic and Research Natural Areas. U.S. Forest Service Gen. Tech. Rep. NE-31.

    Google Scholar 

  • Bjorkbom, J.C. and R.S. Walters (1986). Allegheny hardwood regeneration response to even-age harvesting methods. U.S. Forest Service Research Paper NE-581.

    Google Scholar 

  • Booth, W.E. (1941). Revegetation of abandoned fields in Kansas and Oklahoma. Am. J. Bot. 28:415–5.

    Google Scholar 

  • Bormann, F.H. and G.E. Likens (1979). Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Botkin, D.B. and M.J. Sobel (1975). Stability in time-varying ecosystems. Am. Nat. 109:625–5.

    Google Scholar 

  • Buell, M.F., H.F. Buell, and J.A. Small (1954). Fire in the history of Mettler’s Woods. Bull. Torrey Bot. Club 81:253–5.

    Google Scholar 

  • Buell, M.F., H.F. Buell, J.A. Small, and T.G. Siccama (1971). Invasion of trees in secondary succession on the New Jersey Piedmont. Bull. Torrey Bot. Club 98:67–5.

    Google Scholar 

  • Cairns, J., Jr. (1980). Introduction. In: The Recovery Process in Damaged Ecosystems (J. Cairns, Jr., ed.). Ann Arbor Science, Ann Arbor, pp. 1–10.

    Google Scholar 

  • Canham, C.D. and O.L. Loucks (1984). Catastrophic windthrow in the presettlement forests of Wisconsin. Ecology 65:803–5.

    Google Scholar 

  • Carpenter, S.R. and J.F. Kitchell (1987). The temporal scale of variance in limnetic primary production. Am. Nat. 129:398–5.

    Google Scholar 

  • Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson (1985). Cascading trophic interactions and lake productivity. BioScience 35:634–5.

    Google Scholar 

  • Charles, D.F. and D.R. Whitehead (1986). The PIRLA project: Paleoecological investigations of recent lake acidification. Hydrobiologia 143:13–5.

    CAS  Google Scholar 

  • Clements, F.E. (1916). Plant Succession. Carnegie Institution of Washington, Pub. 242.

    Google Scholar 

  • Clements, F.E. (1927). Plant Succession and Indicators. Carnegie Inst., Washington.

    Google Scholar 

  • Collins, S.L. and D.E. Adams (1983). Succession in grasslands: Thirty-two years of change in a central Oklahoma tallgrass prairie. Vegetatio 51:181–5.

    Google Scholar 

  • Connell, J.H. and R.O. Slatyer (1977). Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111:1119–5.

    Google Scholar 

  • Cooper, W.S. (1939). A fourth expedition to Glacier Bay, Alaska. Ecology 20:130–5.

    Google Scholar 

  • Cosby, B.J., G.M. Hornberger, J.N. Galloway, and R.F. Wright (1986). Timescales of catchment acidification: A qualitative model for estimating freshwater acidification. Environ. Sci. & Technol. 19:1144–5.

    Google Scholar 

  • Covington, W.W. (1981). Changes in forest floor organic matter and nutrient content following clearcutting in northern hardwoods. Ecology 62:41–5.

    Google Scholar 

  • Cowles, H.C (1899). The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot. Gaz. 27:95–117; 167-202; 281-308; 361-369.

    Google Scholar 

  • Crocker, R.L. and B. A. Dickson (1957). Soil development on the recessional moraines of the Herbert and Mendenhall Glaciers, south-eastern Alaska. J. Ecol. 45:169–5.

    Google Scholar 

  • Crocker, R.L. and J. Major (1955). Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43:427–448.

    Google Scholar 

  • Cummins, K.W., J.R. Sedell, F.J. Swanson, G.W. Minshall, S.G. Fisher, C.E. Cushing, R.C. Peterson, and R.L. Vannote (1983). Organic matter budgets for stream ecosystems: Problems in their evaluation. In: Stream Ecology: Application and Testing of General Ecological Theory (J.R. Barnes and G.W. Minshall, eds.). Plenum, New York, pp. 299–353.

    Google Scholar 

  • Davison, S.E. and R.T.T. Forman (1981). Herb and shrub dynamics in a mature oak forest: A thirty-year study. Bull. Torrey Bot. Club 109:64–5.

    Google Scholar 

  • Driscoll, C.T., N.M. Johnson, G.E. Likens, and M.C. Feller (1988). Effects of acidic deposition on the chemistry of headwater streams: A comparison between Hubbard Brook, NH and Jamieson Creek, BC Water Resour. Res. 24:195–200.

    CAS  Google Scholar 

  • Drury, W.H. and I.C.T. Nisbet (1973). Succession. J. Arnold Arboret. 54:351–5.

    Google Scholar 

  • Forman, R.T.T. and B.A. Elfstrom (1975). Forest structure comparison of Hutcheson Memorial Forest and eight old woods on the New Jersey Piedmont. Wm. L. Hutcheson Mem. For. Bull. 3:44–5.

    Google Scholar 

  • Fisher, S.G. (1983). Succession in streams. In: Stream Ecology: Application and Testing of General Ecological Theory (J.R. Barnes and G.W. Minshall, eds.). Plenum, New York, pp. 7–27.

    Google Scholar 

  • Galloway, J.N., S.A. Norton, and M.R. Church (1983). Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environ. Sci. & Technol. 17:541A–545A.

    CAS  Google Scholar 

  • Gjessing, E.T., A. Henriksen, M. Johannessen, and R.F. Wright (1976). Effects of acid precipitation on freshwater chemistry. In: Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway (F.H. Braekke, ed.). SNSF, Oslo, pp. 65–85.

    Google Scholar 

  • Gleason, H.A. (1927). Further views on the succession concept. Ecology 8:299–5.

    Google Scholar 

  • Harper, J.L. (1982). After description. In: The Plant Community as a Working Mechanism (E.I. Newman, ed.). Spec. Pub. No. 1, Brit. Ecol. Soc., Blackwell, Boston, pp. 11–24.

    Google Scholar 

  • Harvey, H.H. (1980). Widespread and diverse changes in the biota of North American lakes and rivers coincident with acidification. In: Ecological Impact of Acid Precipitation (D. Drabløs and A. Tollan, eds.). Proc. Intl. Conf., Sandefjord, Norway, March 11–14, 1980. The Norwegian Interdisciplinary Research Programme. Acid Precipitation—Effects on Forest and Fish, Oslo, pp. 93–98.

    Google Scholar 

  • Hedin, L.O., G.E. Likens, and F.H. Bormann (1987a). Decrease in precipitation acidity resulting from S04 2− concentration. Nature 325:244–5.

    CAS  Google Scholar 

  • Hedin, L.O., M.S. Mayer, and G.E. Likens (1987b). The effect of deforestation on organic debris dams. Verh. Internat. Verein. Limnol. (in press).

    Google Scholar 

  • Hedin, R.S. (1986). The consequences of strip mine reclamation: Vegetation and economics of reclaimed and unreclaimed sites in west-central Pennsylvania. Ph.D. Thesis. Rutgers University, New Brunswick, N.J.

    Google Scholar 

  • Heinselman, M.L. (1973). Fire in the virgin forest of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 3:329–5.

    Google Scholar 

  • Henriksen, A. (1980). Acidification of freshwaters—A large scale titration. In: Ecological Impact of Acid Precipitation (D. Drabløs and A. Tollan, eds.). Proc. Intl. Conf., Sande-fjord, Norway, March 11–14, 1980. The Norwegian Interdisciplinary Research Programme. Acid Precipitation—Effects on Forest and Fish, Oslo, pp. 68–74.

    Google Scholar 

  • Horn, H.S. (1974). The ecology of secondary succession. Annu. Rev. Ecol. Syst. 5:25–5.

    Google Scholar 

  • Hough, A.F. (1936). A climax forest community on East Tionesta Creek in northwestern Pennsylvania. Ecology 17:9–5.

    Google Scholar 

  • Hough, A.F. and R.D. Forbes (1943). The ecology and sylvics of forests in the high plateaus of Pennsylvania. Ecol. Monogr. 13:299–5.

    Google Scholar 

  • Jenny, H. (1941). Factors of Soil Formation. McGraw-Hill, New York.

    Google Scholar 

  • Johnston, D.W. and E.P. Odum (1956). Breeding bird populations in relation to plant succession on the Piedmont of Georgia. Ecology 37:50–5.

    Google Scholar 

  • Keever, C. (1950). Causes of succession on old fields of the Piedmont, North Carolina. Ecol. Monogr. 20:231–5.

    Google Scholar 

  • Keller, E.A. and F.J. Swanson (1979). Effects of large organic material on channel form and fluvial processes. Earth Surface Process. 4:361–5.

    Google Scholar 

  • Kitchell, J.F. and S.R. Carpenter (1987). Piscivores, planktivores, fossils and phorbins. In: Predation: Direct and Indirect Impacts on Aquatic Communities (C. Kerfoot and A. Sih, eds.). Univ. Press of New England, Hanover, NH, pp. 132–146.

    Google Scholar 

  • Leak, W.B. (1972). Competitive exclusion in forest trees. Nature 236:461–5.

    Google Scholar 

  • Lienkaemper, G.W. and F.J. Swanson (1987). Dynamics of large woody debris in streams in old-growth Douglas-fir forests. Can. J. For. Res. 17:150–5.

    Google Scholar 

  • Leivestad, H., G. Hendry, I.P. Muniz, and E. Snekvik (1976). Effects of acid precipitation on freshwater organisms. In: Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway (E. Braekke, ed.). SNSF, Oslo, pp. 87–111.

    Google Scholar 

  • Likens, G.E. and R.E. Bilby (1982). Development, maintenance and role of organic-debris dams in New England streams. In: Sediment Budgets and Routing in Forested Drainage Basins (F.J. Swanson, R.J. Janda, T. Dunner, and D.N. Swanston, eds.). U.S. Forest Service Gen. Tech. Rep. PNW-141, pp. 122–128.

    Google Scholar 

  • Likens, G.E., F.H. Borman, and N.M. Johnson (1972). Acid rain. Environment 14:33–5.

    CAS  Google Scholar 

  • Likens, G.E., E.F. Wright, J.N. Galloway, and T.J. Butler (1979). Acid rain. Sci. Am. 241(4): 43–51.

    CAS  Google Scholar 

  • Likens, G.E., F.T. Mackenzie, J.E. Richey, J.R. Sedell, and K.K. Turekian (1981). Carbon dioxide effects research and assessment program: Flux of organic carbon by rivers to the oceans. Report of a Workshop, Woods Hole, MA. Sept. 21–25, 1980. U.S. Dept. of Energy.

    Google Scholar 

  • Loucks, O.L. (1970). Evolution of diversity, efficiency and community stability. Am Zool. 10:17–5.

    PubMed  CAS  Google Scholar 

  • Marquis, D.A. (1975). The Allegheny Hardwoods forests of Pennsylvania. U.S. Forest Service Gen. Tech. Rep. NE-15.

    Google Scholar 

  • Marquis, D.A. and R. Brenneman (1981). The impact of deer on forest vegetation in Pennsylvania. U.S. Forest Service Gen. Tech. Rep. NE-65.

    Google Scholar 

  • Mason, H.L. and J.H. Langenheim (1957). Language analysis and the concept environment. Ecology 38:325–5.

    Google Scholar 

  • Miles, J. (1979). Vegetation Dynamics. Methuen, New York.

    Google Scholar 

  • Morin, P.J. (1984). Odonate guild composition: Experiments with colonization history and fish predation. Ecology 65:1866–5.

    Google Scholar 

  • Morin, P.J. (1987). Salamander predation, prey facilitation, and seasonal succession in microcrustacean communities. In: Predation: Direct and Indirect Impacts on Aquatic Communities (W.C. Kerfoot and A. Sih, eds.) Univ. Press of New England, Hanover, pp. 174–187.

    Google Scholar 

  • Odén, S. (1968). The acidification of air and precipitation and its consequences on the environment. Swedish National Science Res. Council, Ecol. Committee, Bull. 1.

    Google Scholar 

  • Oliver, C.D. (1981). Forest development in North America following major disturbances. For. Ecol. Manage. 3:153–5.

    Google Scholar 

  • Olson, J.S. (1958). Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot. Gaz. 119:125–5.

    CAS  Google Scholar 

  • Oosting, H.J. (1942). An ecological analysis of the plant communities of Piedmont, North Carolina. Am. Midi. Nat. 28:1–5.

    Google Scholar 

  • Paine, R.T. (1977). Controlled manipulations in the marine intertidal zone, and their contributions to ecological theory. Special Pub. Acad. Nat. Sci. Phila. 12:245–5.

    Google Scholar 

  • Paine, R.T. and S.A. Levin (1981). Intertidal landscapes: Disturbance and the dynamics of pattern. Ecol. Monogr. 51:145–5.

    Google Scholar 

  • Pastor, J., M. A. Stillwell, and D. Tilman (1987). Nitrogen mineralization and nitrification in four Minnesota old fields. Oecologia 71:481–5.

    Google Scholar 

  • Penfound, W.T. and E.L. Rice (1957). Plant population changes in a native prairie plowed annually over a five-year period. Ecology 38:148–5.

    Google Scholar 

  • Pickett, S.T.A. (1982). Population patterns through twenty years of oldfield succession. Vegetatio 49:45–5.

    Google Scholar 

  • Pickett, S.T.A. (1983). Absence of an Andropogon stage in oldfield succession at the Hutcheson Memorial Forest. Bull. Torrey Bot. Club 110:533–5.

    Google Scholar 

  • Pickett, S.T.A. and P.S. White (1985). Synthesis. In: The Ecology of Natural Disturbance and Patch Dynamics (S.T.A. Pickett and P.S. White, eds.) Academic Press, New York, pp. 371–384.

    Google Scholar 

  • Pickett, S.T.A., S.L. Collins, and J.J. Armesto (1987). Models, mechanisms and pathways of succession. Bot. Rev. 53:335–5.

    Google Scholar 

  • Poore, M.E.D. (1968). Studies on Malaysian rainforest: I. The forest of Triassic sediments in Jengka Forest Reserve. Jour. Ecol. 56:143–5.

    Google Scholar 

  • Raup, H. M. (1957). Vegetational adjustment to the instability of the site. Proc. Pap. Tech. Meet., Int. Union Conserv. Nature and Natural Resour., 6th, Edinburgh, pp. 36–48.

    Google Scholar 

  • Riley, C.V. (1977). Ecosystem development on coal surface-mined lands, 1918–1977. In: Recovery and Restoration of Damaged Ecosystems (J. Cairns, Jr., K.L. Dickson, and E.L. Herricks, eds.) Univ. Virginia Press, Charlottesville, pp. 303–346.

    Google Scholar 

  • Robertson, G.P. (1982). Factors regulating nitrification in primary and secondary succession. Ecology 63:1561–5.

    CAS  Google Scholar 

  • Robertson, G.P. and P.M. Vitousek (1981). Nitrification potentials in primary and secondary succession. Ecology 62:376–5.

    Google Scholar 

  • Romme, W.H. (1982). Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol. Monogr. 52:199–5.

    Google Scholar 

  • Romme, W.H. and W.S. Martin (1982). Natural disturbance by treefalls in old-growth mixed mesophytic forest Lilley Cornett Woods, Kentucky. In: Central Hardwood For. Conf., TV Proc. (R.H. Muller, ed.). Univ. Kentucky, Lexington, pp. 367–383.

    Google Scholar 

  • Rowe, J.S. (1961). Critique of some vegetational concepts as applied to forests in northwestern Alberta. Can. J. Bot. 39:1007–5.

    Google Scholar 

  • Runkle, J.R. (1982). Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology 63:1533–5.

    Google Scholar 

  • Runkle, J.R. (1985). Disturbance regimes in temperate forets. In: The Ecology of Natural Disturbance and Patch Dynamics (S.T.A. Pickett and P.S. White, eds.). Academic Press, New York, pp. 17–33.

    Google Scholar 

  • Runkle, J.R. and T.C. Yetter (1987). Treefalls revisited: Gap dynamics in the southern Applachians. Ecology 68:417–5.

    Google Scholar 

  • Schindler, D.W. (1978). Factors regulating phytoplankton production and standing crop in the world’s lakes. Limnol. Oceanogr. 23:478–5.

    Google Scholar 

  • Shapiro, J. (1980). The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In: Hypertrophic Ecosystems (J. Barica and L.R. Mur, eds.). Junk, The Hague, pp. 105–115.

    Google Scholar 

  • Smith, F.E. (1969). Effects of enrichment in mathematical models. In: Eutrophication: Causes, Consequences, Correctives (G.A. Rohlich, Chair Planning Committee). Natl. Acad. Sci., Washington, D.C., pp. 631–645.

    Google Scholar 

  • Sousa, W.P. (1984). The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15:353–5.

    Google Scholar 

  • Stevens, P.R. and T.W. Walker (1970). The chronosequence concept and soil formation. Quart. Rev. Biol 45:333–5.

    Google Scholar 

  • Stiles, E.W. (1982). Expansions of mockingbird and multiflora rose in the northeastern United States and Canada. Am. Birds 36:358–5.

    Google Scholar 

  • Strand, L. (1980). The effect of acid precipitation on tree growth. In: Ecological impact of acid precipitation: Proceedings of an international conference (D. Drabløs and A. Tollan, eds.). Sandefjord, Norway, March 11–14, 1980. SNSF Project, The Norwegian Interdisciplinary Research Programme, Oslo, pp. 64–67.

    Google Scholar 

  • Strayer, D., J.S. Glitzenstein, C.G. Jones, J. Kolasa, G.E. Likens, M.J. McDonnell, G.G. Parker, and S.T. A. Pickett (1986). Long-Term Ecological Studies: An Illustrated Account of their Design, Operation, and Importance to Ecology. Occas. Pub. Inst. Ecosyst. Studies, New York Bot. Gard., M.F. Cary Arboret., Millbrook, NY.

    Google Scholar 

  • Swanson, F.J., G.W. Lienkaemper and J.R. Sedell (1976). History, physical effects, and management implications of large organic debris in western Oregon streams. USDA For. Serv. Gen. Tech. Rep. PNW 56.

    Google Scholar 

  • Tansley, A.G. (1939). The British Isles and Their Vegetation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Tilman, D. (1986). Nitrogen-limited growth in plants from different successional stages. Ecology 67:555–5.

    Google Scholar 

  • van der Maarel, E. and M.A.J. Werger (1978). On the treatment of succession data. Phyto-coenologia 7:257–5.

    Google Scholar 

  • Vinogradov, M.E. and E.A. Shushkina (1978). Some development patterns of plankton communities in upwelling areas of the Pacific Ocean. Mar. Biol. (Berl.) 48:357–5.

    Google Scholar 

  • Vrijenhoek, R.C. (1985). Animal population genetics and disturbance: the effects of local extinctions and recolonizations on heterozygosity and fitness. In: The Ecology of Natural Disturbance and Patch Dynamics (S.T.A. Pickett and P.S. White, eds.). Academic Press, New York, pp. 266–285.

    Google Scholar 

  • Walker, D. (1970). Direction and rate in some British postglacial hydroseres. In: Studies in the Vegetational History of the British Isles (D. Walker and R.G. West, eds.). Cambridge Univ. Press, Cambridge, pp. 117–139.

    Google Scholar 

  • White, P.S. (1979). Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45:229–5.

    Google Scholar 

  • Winterringer, G.S. and A.G. Vestal (1956). Rock-ledge vegetation in southern Illinois. Ecol. Monogr. 26:105–5.

    Google Scholar 

  • Wright, R.F., T. Dale, E.T. Gjessing, G.R. Hendry, A. Henriksen, M. Johannessen, and L.P. Muniz (1976). Impact of acid precipitation on freshwater ecosystems in Norway. Proceedings of the First Intl. Symp. Acid Precip. and Forest Ecosystem. U.S. Forest Service Gen. Tech. Rep., NE-23.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Pickett, S.T.A. (1989). Space-for-Time Substitution as an Alternative to Long-Term Studies. In: Likens, G.E. (eds) Long-Term Studies in Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7358-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7358-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7360-9

  • Online ISBN: 978-1-4615-7358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics