Skip to main content

Advertisement

Log in

Persistence of clear-water, shallow-lake ecosystems: the role of protected areas and stable aquatic food webs

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The roles of both landscape alteration and in-lake processes need to be considered in conservation strategies for shallow lakes in the prairie regions of North America. Here we focus on shallow lakes in west-central Minnesota, USA, highlighting the long-term ecological history and response to known landscape changes of a clear-water, macrophyte-dominated, shallow lake. Contemporary limnological data suggest the aquatic ecosystem has been very stable and fishless for the last ~15 years. Sediment proxies for primary production and ecological change confirm that a stable ecosystem likely prevailed for the last ~200 years. However, sedimentary indicators of catchment erosion detail a distinct response to land-use change during the conversion of native grassland to agricultural land, and following establishment of a protected waterfowl production area (WPA) around the lake. Post-WPA, the rate of sediment accrual decreased dramatically within 5–10 years and sources of organic matter were similar to those of the pre-settlement period. The aquatic ecosystem has been able to withstand nutrient enrichment and allochthonous inputs because stable trophic interactions have likely been in place for more than 200 years. We conclude that lack of hydrologic connectivity and isolated, small catchments are important factors in the promotion of clear-water shallow lake ecosystems, mainly because they prevent colonization by fish and associated ecological consequences. This study highlights the importance of managing both the landscape and in-lake processes to maintain stable, clear-water, shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead–210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Arar EJ, Collins GB (1997) In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. National exposure research laboratory, Office of research and development, US environmental protection agency, Cincinnati, Ohio

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Bayley S, Prather C (2003) Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes. Limnol Oceanogr 48:2335–2345

    Article  Google Scholar 

  • Belmont P, Gran KB, Schottler SP, Wilcock PR, Day SS, Jennings C, Lauer JW, Viparelli E, Willenbring JK, Engstrom DR, Parker G (2011) Large shift in source of fine sediment in the Upper Mississippi River. Environ Sci Technol 45:8804–8810

    Article  Google Scholar 

  • Bergström A (2010) The use of TN: TP and DIN: TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat Sci 72:277–281

    Article  Google Scholar 

  • Binford M (1990) Calculation and uncertainty analysis of Pb 210 dates for PIRLA project lake sediment cores. J Paleolimnol 3:253-267

    Google Scholar 

  • Boës X, Rydberg J, Martinez-Cortizas A, Bindler R, Renberg I (2011) Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. J Paleolimnol 46:75–87

    Article  Google Scholar 

  • Bradshaw EG, Rasmussen P, Odgaard BV (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 15:1152–1162

    Article  Google Scholar 

  • Brenner M, Keenan LW, Miller SJ, Shelske C (1999) Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the Upper St. Johns River Basin, Florida. Wetl Ecol Manag 6:221–240

    Article  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Google Scholar 

  • Conley DJ, Schelske CL (2001) Biogenic silica. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 281–294

    Google Scholar 

  • Cooke C, Wolfe A, Hobbs W (2009) Lake-sediment geochemistry reveals 1,400 years of evolving extractive metallurgy at Cerro de Pasco, Peruvian Andes. Geol 37:1019–1022

    Article  Google Scholar 

  • Crumpton WG, Isenhart TM, Mitchell PD (1992) Nitrate and organic N analyses with second-derivative spectroscopy. Limnol Oceanogr 37:907–913

    Article  Google Scholar 

  • DeMaster DJ (1991) Measuring biogenic silica in marine sediments and suspended matter. In: Hurd DC, Spenser DW (eds) Marine particles: analysis and characterization. American Geophysical Union, Washington, pp 363–368

    Google Scholar 

  • Depp ER, Lathrop RC (1992) A comparison of two rake sampling techniques for sampling aquatic macrophytes. Wis Dep Nat Resour Res Manage Find No. 32

  • Eaton A, Clescerl L, Rice EW, Greenberg A (eds) (1999) Standard methods for the examination of waters and wastewaters, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Edwards GP, Molof AH, Schneeman RW (1965) Determination of orthophosphate in fresh and saline waters. J Am Water Works Assoc 57:917–925

    Google Scholar 

  • EPA (1996) Test methods for evaluating solid waste, physical/chemical methods, method 3050b. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf

  • Euliss NH Jr, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important non-forested land-based carbon storage sites. Sci Tot Environ 361:179–188

    Article  Google Scholar 

  • Fallu MA, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Québec and Labrador (Canada): species-environment relationships in lakes of boreal forest, forest-tundra and tundra regions. Bibliotheca Diatomologica, vol 45. E. Schweizerbart, Germany, p 200

    Google Scholar 

  • Gleason RA, Euliss NH Jr (1998) Sedimentation of prairie wetlands. Great Plains Res J Nat Soc Sci 8:97–112

    Google Scholar 

  • Gleason RA, Euliss NH, Hubbard DE, Duffy WG (2003) Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23:26–34

    Article  Google Scholar 

  • Grimm EC (1987) CONISS, a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geol 13:13–35

    Article  Google Scholar 

  • Hall R, Leavitt P, Quinlan R, Dixit A, Smol J (1999) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756

    Article  Google Scholar 

  • Hanson M, Butler M (1994) Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Can J Fish Aquat 51:1180–1188

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Herwig BR, Zimmer KD, Hanson MA, Konsti ML, Younk JA, Wright RA, Vaughn SA, Haustein MD (2010) Factors influencing fish distributions in shallow lakes in prairie and prairie-parkland regions of Minnesota, USA. Wetlands 30:609–619

    Article  Google Scholar 

  • Hieltjes A, Lijklema L (1980) Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 9:405

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis—an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hobbs W, Hobbs J, Lafrancois T, Zimmer K, Theissen K, Edlund M, Michelutti N, Butler M, Hanson M, Carlson T (2012) A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecol Appl 22:1483–1496

    Article  Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Google Scholar 

  • Jeppesen E, Jensen J, Søndergaard M, Lauridsen T, Pedersen L, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiol 342:151–164

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (1998) The structuring role of submerged macrophytes in lakes. Springer, New York, p 471

    Book  Google Scholar 

  • Jeppesen E, Peder Jensen J, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiol 584:239–252

    Article  Google Scholar 

  • Johnson WC, Millett BV, Gilmanov T, Voldseth RA, Guntenspergen GR, Naugle DE (2005) Vulnerability of Northern prairie wetlands to climate change. Bioscience 55:863–872

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds. In: Peterson DL (ed) Aspects of climate variability in the Pacific and western Americas. American Geophysical Union Geophys Monogr 55:165–236

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Band 2/1. Gustav Fischer, Stuttgart, p 876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer, Stuttgart, p 596

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer, Stuttgart, p 576

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae Kritische Ergäzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer, Stuttgart, p 437

    Google Scholar 

  • Martin DB, Hartman WA (1987) The effect of cultivation on sediment composition and deposition in prairie pothole wetlands. Water Air Soil Poll 34:45–53

    Article  Google Scholar 

  • Mazumder A (1994) Patterns of algal biomass in dominant odd-versus even-link ecosystems. Ecology 75:1141–1149

    Article  Google Scholar 

  • Millett B, Johnson WC, Guntenspergen G (2009) Climate trends of the North American Prairie Pothole Region 1906–2000. Clim Change 93:243–267

    Article  Google Scholar 

  • Oslund FT, Johnson RR, Hertel DR (2010) Assessing wetland changes in the Prairie Pothole Region of Minnesota from 1980 to 2007. J Fish Wildlife Manag 1:132–135

    Article  Google Scholar 

  • Potthoff AJ, Herwig BR, Hanson MA, Zimmer KD, Butler MG, Reed JR, Parsons BG, Ward MC (2008) Cascading food-web effects of piscivore introductions in shallow lakes. J Appl Ecol 45:1170–1179

    Google Scholar 

  • R Core Development Team (2001) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Ramstack JM, Fritz SC, Engstrom DR (2004) Twentieth century water quality trends in Minnesota lakes compared with presettlement variability. Can J Fish Aquat Sci 61:561–576

    Article  Google Scholar 

  • Reavie ED, Smol JP (1998) Freshwater diatoms of the St. Lawrence River, Bibliotheca Diatomologica 41. J. Cramer, University of California, p 137

  • Sayer CD, Davidson TA, Jones JI, Langdon PG (2010a) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55:487–499

    Article  Google Scholar 

  • Sayer CD, Davidson TA, Jones JI (2010b) Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw Biol 55:500–513

    Article  Google Scholar 

  • Scheffer M, Hosper S, Meijer M, Moss B (1993) Alternative equilibria in shallow lakes. TREE 8:275–279

    Google Scholar 

  • Scheffer M, Van Geest GJ, Zimmer KD, Jeppesen E, Butler MG, Hanson MA, Søndergaard M, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929

    Article  Google Scholar 

  • Skagen SK, Melcher CP, Haukos DA (2008) Reducing sedimentation of depressional wetlands in agricultural landscapes. Wetlands 28:594–604

    Article  Google Scholar 

  • Swanson GA (1978) A plankton sampling device for shallow wetlands. J Wildlife Manag 42:670–672

    Article  Google Scholar 

  • Theissen KM, Hobbs WO, Hobbs JMR, Zimmer KD, Domine LM, Cotner JB, Sugita S (2012) The altered ecology of Lake Christina: a record of regime shifts, land-use change, and management from a temperate shallow lake. Sci Tot Environ 433:336–346

    Article  Google Scholar 

  • Van Geest GJ, Roozen FCJM, Coops H, Roijackers RMM, Buijse AD, Peeters ETHM, Scheffer M (2003) Vegetation abundance in lowland floodplain lakes determined by surface area, age and connectivity. Freshw Biol 48:440–454

    Article  Google Scholar 

  • Verardo DJ, Froelich PN, McIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep Sea Res 37:157–165

    Article  Google Scholar 

  • Vermaire J, Gregory-Eaves I (2008) Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages. J Paleolimnol 39:477–490

    Article  Google Scholar 

  • Wright HE (1991) Coring tips. J Paleolimnol 6:37–49

    Article  Google Scholar 

  • Zimmer KD, Hanson MA, Butler MG (2001) Effects of fathead minnow colonization and removal on a prairie wetland ecosystem. Ecosystems 4:346–357

    Article  Google Scholar 

  • Zimmer KD, Hanson MA, Butler MG (2002) Effects of fathead minnows and restoration on prairie wetland ecosystems. Freshw Biol 47:2071–2086

    Article  Google Scholar 

  • Zimmer K, Hanson M, Butler M (2003) Relationships among nutrients, phytoplankton, macrophytes, and fish in prairie wetlands. Can J Fish Aquat Sci 60:721–730

    Google Scholar 

  • Zimmer KD, Herwig BH, Laurich LM (2006) Nutrient excretion by fish in wetland ecosystems and its potential to support algal production. Limnol Oceanogr 51:197–207

    Article  Google Scholar 

  • Zimmer KD, Hanson MA, Herwig BR, Konsti ML (2009) Thresholds and stability of alternative regimes in shallow prairie-parkland lakes of Central North America. Ecosystems 12:843–852

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mark Edlund for field assistance and Elizabeth Droessler and Alaina Fedie for laboratory assistance. Dan Engstrom and Shawn Schottler provided thoughtful comments and established the geochronology. Personal communications with the US Fish and Wildlife Service about the history of the Blakesley Lake WPA were important to this article. This article benefited from the comments and thoughts of Mark Brenner, Jim Cotner, and two anonymous reviewers. Funding was provided by the National Science Foundation (DEB-0919095, DEB-0919070, and DEB- 0918753) and the University of St. Thomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William O. Hobbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbs, W.O., Theissen, K.M., Hagen, S.M. et al. Persistence of clear-water, shallow-lake ecosystems: the role of protected areas and stable aquatic food webs. J Paleolimnol 51, 405–420 (2014). https://doi.org/10.1007/s10933-013-9763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-013-9763-1

Keywords

Navigation