Skip to main content
Log in

Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Light and temperature are two of the most important environmental stimuli regulating plant development. Studies have revealed that light and temperature synergically regulate numerous developmental and metabolic processes. In this study, we adopted microarray and real-time PCR to identify common components via the analysis of Arabidopsis heat stress (HS) response under light and dark conditions. It certificated the existence of crosstalk between light and temperature signaling pathways. The analysis of microarray revealed that variable—light—influenced plant HS response in a great extent. Furthermore, various genes, e.g., two phytochrome genes (PHYA and PHYB) and one transcriptional factor gene (HY5), were recognized as light-responsive elements, and answered to HS. The expression levels of three genes rhythmically showed up-and-down oscillations after HS. These results can help to understand how plants perceive temperature signal and identify the interrelationship between signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68. doi:10.1016/j.pbi.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua N-H (1990) Molecular light switches for plant genes. Plant Cell 2:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanssen IM, van Esse HP, Ballester AR, Hogewoning SW, Parra NO, Paeleman A, Lievens B, Bovy AG, Thomma BP (2011) Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol 156:301–318. doi:10.1104/pp.111.173906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Yamada K, Shigemori H, Goto N, Miyamoto K, Ueda J, Hasegawa K (2004) Isolation and identification of blue light-induced growth inhibitor from light-grown Arabidopsis shoots. Plant Growth Regul 44:81–86

    Article  CAS  Google Scholar 

  • Heggie L, Halliday KJ (2005) The highs and lows of plant life: temperature and light interactions in development. Int J Dev Biol 49:675

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Sumitomo K, Oda A, Shimizu H, Hisamatsu T (2012) Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant Physiol 169:1789–1796. doi:10.1016/j.jplph.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  • Hofmann N (2014) Cryptochromes and seed dormancy: the molecular mechanism of blue light inhibition of grain germination. Plant Cell 26:846. doi:10.1105/tpc.114.124727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XW, Huang XH, Wang YR (2012) Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. Plant Growth Regul 67:199–207. doi:10.1007/s10725-012-9677-3

    Article  CAS  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Joseph MP, Papdi C, Kozma-Bognár L, Nagy I, López-Carbonell M, Rigó G, Koncz C, Szabados L (2014) The Arabidopsis ZINC FINGER PROTEIN3 interferes with abscisic acid and light signaling in seed germination and plant development. Plant Physiol 165:1203–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karayekov E, Sellaro R, Legris M, Yanovsky MJ, Casal JJ (2013a) Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. Plant Cell 25:2892–2906. doi:10.1105/tpc.113.114306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karayekov E, Sellaro R, Legris M, Yanovsky MJ, Casal JJ (2013b) Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. Plant Cell Online 25:2892–2906

    Article  CAS  Google Scholar 

  • Kurtyka R, Małkowski E, Burdach Z, Kita A, Karcz W (2012) Interactive effects of temperature and heavy metals (Cd, Pb) on the elongation growth in maize coleoptiles. C R Biol 335:292–299. doi:10.1016/j.crvi.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. doi:10.1104/pp.105.062257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laxmi A, Pan J, Morsy M, Chen R (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS ONE. doi:10.1371/journal.pone.0001510.g001

    PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang X, Hu R, Wu F, Ma J, Meng Y, Fu Y (2013) Identification and molecular characterization of FKF1 and GI homologous genes in soybean. PLoS ONE 8:e79036

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J-Y, Deng X-G, Chen L-J, Fu F-Q, Pu X-J, Xi D-H, Lin H-H (2015) Involvement of PHYB in resistance to Cucumber mosaic virus in Nicotiana tabacum. Plant Growth Regul 77(1):33–42

    Article  CAS  Google Scholar 

  • Liu X, Qin T, Ma Q, Sun J, Liu Z, Yuan M, Mao T (2013) Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis. Plant Cell 25:1740–1755. doi:10.1105/tpc.113.112789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loveys B, Scheurwater I, Pons T, Fitter A, Atkin O (2002) Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slow-growing plant species. Plant, Cell Environ 25:975–988

    Article  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants–a rhythmic arrangement. FEBS Lett 585:1474–1484

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:e258. doi:10.1371/journal.pbio.0020258

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh S, Warnasooriya SN, Montgomery BL (2013) Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana. Plant Mol Biol 81:627–640. doi:10.1007/s11103-013-0029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    Article  CAS  PubMed  Google Scholar 

  • Rangani G, Underwood JL, Srivastava V (2015) Chromatin analysis of an Arabidopsis phytochrome A allele reveals the correlation of transcriptional repression with recalcitrance to histone acetylation. Plant Growth Regul 75:179–186

    Article  CAS  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellaro R, Yanovsky MJ, Casal JJ (2011) Repression of shade-avoidance reactions by sunfleck induction of HY5 expression in Arabidopsis. Plant J 68:919–928. doi:10.1111/j.1365-313X.2011.04745.x

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Gao Z, Luan W (2012) Interaction between temperature and photoperiod in regulation of flowering time in rice. Sci China Life Sci 55:241–249

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583. doi:10.1016/j.tplants.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C (2003) The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes Dev 17:256–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Wu S, Yang L, Xue R, Li H, Wang Y, Zhao H (2014) Exogenous progesterone alleviates heat and high light stress-induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regul 74:311–318. doi:10.1007/s10725-014-9920-1

    Article  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genom 8:125. doi:10.1186/1471-2164-8-125

    Article  Google Scholar 

  • Thines BC, Youn Y, Duarte MI, Harmon FG (2014) The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot 65:1141–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zanten M, Voesenek LA, Peeters AJ, Millenaar FF (2009) Hormone-and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol 151:1446–1458

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zanten M, Ritsema T, Polko JK, Leon-Reyes A, Voesenek LA, Millenaar FF, Pieterse CM, Peeters AJ (2012) Modulation of ethylene-and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. Planta 235:677–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinterhalter D, Vinterhalter B (2014) Phototropic responses of potato under conditions of continuous light and subsequent darkness. Plant Growth Regul 75:725–732. doi:10.1007/s10725-014-9974-0

    Article  Google Scholar 

  • Wang L, Fujiwara S, Somers DE (2010) PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29:1903–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin C, Wang X, Cai J, Zhou Q, Liu F, Dai T, Cao W, Jiang D (2015) Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. Plant Growth Regul. 1–11. doi: 10.1007/s10725-015-0119-x

  • Yang Y-X, Wang M-M, Ren Y, Onac E, Zhou G, Peng S, Xia X-J, Shi K, Zhou Y-H, Yu J-Q (2015) Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regul 76:167–175

    Article  CAS  Google Scholar 

  • Zeng J, He X, Wu D, Zhu B, Cai S, Nadira UA, Jabeen Z, Zhang G (2014) Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium. PLoS ONE 9:e100567. doi:10.1371/journal.pone.0100567

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, He H, Wang X, Wang X, Yang X, Li L, Deng XW (2011) Genome-wide mapping of the HY5-mediated genenetworks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65:346–358. doi:10.1111/j.1365-313X.2010.04426.x

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968. doi:10.1093/jxb/erq053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr. Jian Li (Hunan Normal University, China), Weisong Pan (Hunan Agricultural University, China) and Dezhi Wu, Shengguan Cai (Zhejiang University, China) for their technical guidance and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biru Hu.

Additional information

Junyi Song and Qijun Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (XLS 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Liu, Q., Hu, B. et al. Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul 79, 209–218 (2016). https://doi.org/10.1007/s10725-015-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0126-y

Keywords

Navigation