Skip to main content
Log in

Chromatin analysis of an Arabidopsis Phytochrome A allele reveals the correlation of transcriptional repression with recalcitrance to histone acetylation

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Phytochrome A (phyA) is a major photoreceptor of red light that regulates seedling de-etiolation. The wild-type PHYA is abundantly expressed in dark and repressed by light through chromatin modification involving histone hypoacetylation and enrichment of the repressive histone mark, H3 lysine 27 trimethylation (H3K27me3). Earlier, an Arabidopsis phyA allele, phyA-17, was reported that contains hypermethylation in the gene body, and is repressed constitutively (transcriptional repression in the dark). In this study, chromatin analysis of phyA-17 was done to understand the basis of its transcriptional repression. Specifically, this study analyzed four different histone modifications on phyA-17 and the wild-type PHYA (Columbia-0) in light and dark conditions. This analysis revealed hypoacetylation of phyA-17 chromatin in both conditions correlating with its constitutive repression. However, relative enrichment of H3K27me3 on phyA-17 chromatin was not detected in either condition. Histone hypoacetylation suggested a role of histone deacetylases in phyA-17 repression. Chemical inhibitors of histone deacetylases, Trichostatin A and Sodium Butyrate, induced partial de-etiolation of phyA-17 seedlings without activating the resident phyA gene. Gene expression analysis revealed activation of the phyA-signaling pathway by Trichostatin A, suggesting a role of histone deacetylases downstream in the seedling de-etiolation pathway. However, since phyA-17 repression is not dependent on histone deacetylases, recalcitrance to histone acetylation by histone acetyl transferases, possibly due to hypermethylation, is likely the basis of its hypoacetylated chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aceituno FF, Moseyko N, Rhee SY, Gutiérrez RA (2008) The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genom 9:438

    Article  Google Scholar 

  • Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 3:e3156

    Article  PubMed Central  PubMed  Google Scholar 

  • Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE 6:e14524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canton FR, Quail PH (1999) Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis. Plant Physiol 121:1207–1215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charron JB, He H, Elling AA, Deng XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chawla R, Nicholson SJ, Folta KM, Srivastava V (2007) Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. Plant J 52:1105–1118

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalakouras A, Dadami E, Zwiebel M, Krczal G, Wassenegger M (2012) Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics 7:1071–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de la Paz Sanchez M, Gutierrez C (2009) Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription. Proc Natl Acad Sci USA 106:2065–2070

    Article  PubMed Central  PubMed  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    Article  CAS  PubMed  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehring M, Henikoff S (2008) DNA methylation and demethylation in Arabidopsis. Arabidopsis Book 6:e0102

    Article  PubMed Central  PubMed  Google Scholar 

  • Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Ng DW, Li WH, Chen ZJ (2011) Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 21:590–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hohn T, Corsten S, Rieke S, Müller M, Rothnie H (1996) Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci USA 93:8334–8339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hudson K, Luo S, Hagemann N, Preuss D (2011) Changes in global gene expression in response to chemical and genetic perturbation of chromatin structure. PLoS ONE 6(6):e20587. doi:10.1371/journal.pone.0020587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S, Ito T, Watanabe Y, Ueno Y, Fukazawa H, Kojima S, Machida Y, Machida C (2013) Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 140:1958–1969

    Article  CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Chung PJ, Hemmes H, Jung C, Chua NH (2011) Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus. Plant Cell 23:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17:379–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Li G, Wang H, Deng XW (2011) Phytochrome signaling mechanisms. Arabidopsis Book 9:e0148. doi:10.1199/tab.0148

    Article  PubMed Central  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010) Histone methylations in higher plants. Ann Rev Plant Biol 61:395–420

    Article  CAS  Google Scholar 

  • Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K (2013) PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:1258–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Martienssen RA, Kloc A, Slotkin RK, Tanurdzić M (2008) Epigenetic inheritance and reprogramming in plants and fission yeast. Cold Spring Harb Symp Quant Biol 73:265–271

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Probst AV, Paszkowski J (2005) Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J 24:2783–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rangani G, Khodakovskaya M, Alimohammadi M, Hoecker U, Srivastava V (2012) Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. Plant Mol Biol 79:191–202

    Article  CAS  PubMed  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  CAS  PubMed  Google Scholar 

  • Servet C, Conde e Silva N, Zhou DX (2010) Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3:670–677

    Article  CAS  PubMed  Google Scholar 

  • Shu H, Wildhaber T, Siretskiy A, Gruissem W, Hennig L (2012) Distinct modes of DNA accessibility in plant chromatin. Nat Commun 3:1281

    Article  PubMed  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479:74–79

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Gaut BS (2012) Body-Methylated genes in arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227

    Article  CAS  PubMed  Google Scholar 

  • Takuno S, Gaut BS (2013) Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc Natl Acad Sci USA 110:1797–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 2:e1210

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou DX (2009) Regulatory mechanism of histone epigenetic modifications in plants. Epigenetics 4:15–18

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, He K, Charron JB, Elling AA, Deng XW (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an inter-dependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zubko E, Gentry M, Kunova A, Meyer P (2012) De novo DNA methylation activity of methyltransferase 1 (MET1) partially restores body methylation in Arabidopsis thaliana. Plant J 71:1029–1037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Arkansas Division of Agriculture, and Arkansas Bioscience Institute. Authors are grateful to Arabidopsis Biological Resource Center at The Ohio State University for providing phyA-211, hda9 (SALK_007123), hda15 (SALK_004027C), and hda19 (SALK_139445) seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangani, G., Underwood, J.L. & Srivastava, V. Chromatin analysis of an Arabidopsis Phytochrome A allele reveals the correlation of transcriptional repression with recalcitrance to histone acetylation. Plant Growth Regul 75, 179–186 (2015). https://doi.org/10.1007/s10725-014-9942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9942-8

Keywords

Navigation