Skip to main content
Log in

Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ammopiptanthus mongolicus is the only evergreen broadleaf shrub endemic to the Alashan Desert in northwestern China. The plants can survive temperatures of −30 °C or less in winter. A dehydrin-like protein gene, AmCIP, cloned from a cold-acclimated A. mongolicus seedling was transformed into E. coli. The transgenic strains exhibited enhanced freezing tolerance compared with non-transformed host cells. The recombinant AmCIP remained soluble pre- and post-boiling for 10 min, and protected activity of lactate dehydrogenase during two freeze–thaw cycles more effectively than bovine serum albumin, a protein with a proven cryoprotective effect. Expression of AmCIP in transgenic tobacco increased cold tolerance during seed germination and seedling growth. The YFP-AmCIP fusion protein was localized in the cytoplasm and nucleus in onion inner epidermal cells, indicating that AmCIP might function both in the cytoplasm and nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bradford NM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN5, a dehydrin showing a differential phosphorylation patternin two in Tunisian durum wheat (Triticum durumDesf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Chang SJ, Puryear J, Cainey J (1993) A simple and efficient method for RNA isolation from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, LiminA Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437

    Article  CAS  PubMed  Google Scholar 

  • Eriksson SK, Kutzer M, Procek J, Gröbner G, Harrysona P (2011) Tunable membrane binding of the intrinsically disordered dehydrin Lti30, a cold-induced plant stress protein. Plant Cell 23:2391–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falavigna VS, Miotto YE, Porto DD, Anzanello R, Santos HP, Fialho FB, Margis-Pinheiro M, Pasquali G G, Revers LF (2015) Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiol Plant. doi:10.1111/ppl.12338

    Google Scholar 

  • Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Mol Biol 338:1015–1026

    Article  CAS  Google Scholar 

  • Giarolaa V, Challabathula D, Bartels D (2015) Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. Plant Sci 236:103–115

    Article  Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthusmongolicus. BMC Plant Biol 10:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S (2011) Plant dehydrins and stresstolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • He S, Tan L, Hu Z, Chen G, Wang G, Hu T (2011) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryzasativa L. Mol Genet Genomics 287:39–54

    Article  PubMed  Google Scholar 

  • Heberle-Bors L, Charvat B, Thopson D, Schernthaner JP, Barta A, Matzke AJM (1988) Genetic analysis of T-DNA insertions into the tobacco genome. Plant Cell Rep 7:571–574

    Article  CAS  PubMed  Google Scholar 

  • House M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  Google Scholar 

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydration gene cosegregates with chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail FA, Nitsch LM, Wolters-Arts MM, Mariani C, Derksen JW (2010) Semi-viviparous embryo development and dehydrin expression in the mangrove Rhizophoramucronata Lam. Sex Plant Reprod 23(2):95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalemba EM, Bagniewska-Zadworna A, Ratajczak E (2015) Multiple subcellular localizations of dehydrin-like proteins in the embryonic axes of common beech (Fagus sylvatica L.) seeds during maturation and dry storage. J Plant Growth Regul 34:137–149

    Article  CAS  Google Scholar 

  • Karlson DT, Fujino T, Kimura S, Baba K, Itoh T, Ashworth EN (2003) Novel plasmodesmata association of dehydrin-like proteins in cold- acclimated Red-osier dogwood (Cornussericea). Tree Physiol 23(11):759–767

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51(4):601–617

    Article  Google Scholar 

  • Kosová K, Holková L, Prásil IT, Prásilová P, Bradácová M, Vítámvás P, Capková V (2008) Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeumvulgare). J Plant Physiol 165(11):1142–1151

    Article  PubMed  Google Scholar 

  • Kosová K, Tom Prásil I, Prásilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeumvulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation. J Plant Physiol 167(5):343–350

    Article  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2011) Expression of dehydrins in wheat and barley under different temperatures. Plant Sci 180:46–52

    Article  PubMed  Google Scholar 

  • Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lu C, Shen X, Yin W (2006) Characterization and function analysis of a cold-induced AmCIP geneencoding a dehydrin-like protein in Ammopiptanthus mongolicus. DNA Seq 17:342–349

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu M, Liu J, Chen Y, Chen Y, Lu C (2010) Heterologous expression of an Ammopiptanthus mongolicus late embryogenesis abundant protein gene (AmLEA) enhances Escherichia coli viability under cold and heat stress. Plant Growth Regul 60:163–168

    Article  CAS  Google Scholar 

  • Liu M, Shi J, Lu C (2013) Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC Plant Biol 13:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yu CY, Li HX, Ouyang B, Wang TT, Zhang JH, Wang X, Ye ZB (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211

    Article  CAS  PubMed  Google Scholar 

  • Mingeot D, Dauchot N, Van Cutsem P, Watillon B (2009) Characterization of two cold induced dehydrin genes from Cichorium intybus L. Mol Biol Rep 36:1995–2001

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, Gómez-Anduro G, Jiménez-Bremont JF (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntiastreptacantha cDNA library. Planta 235:565–578

    Article  CAS  PubMed  Google Scholar 

  • Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580:2041–2045

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Reyesb JL, Weia H, Yangc Y, Karlsonc D, Covarrubiash AA, Krebsd SL, Fessehaiee A, Aroraa R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 154:743–753

    Article  Google Scholar 

  • Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 188:791–807

    Article  Google Scholar 

  • Rémus-Borel W, Castonguay Y, Cloutier J, Michaud R, Bertrand A, Desgagnés R, Laberge S (2010) Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). Theor Appl Genet 120(6):1163–1174

    Article  PubMed  Google Scholar 

  • Reyes JL, Campos F, Wei HUI, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant, cell Environ 31(12):1781–1790

    Article  CAS  Google Scholar 

  • Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209(4):377–388

    Article  CAS  PubMed  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran NP, Weiser CJ (1972) An excised leaflet test for evaluating potato frost tolerance. Hort Sci 7:467–468

    Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffth M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunuspersica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Yang Y, Sun X, Yang S, Li X, Yang Y (2014) Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea. Biochem Biophys Res Commun 448:145–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 31270737), Beijing Municipal Natural Science Foundation (Grant No. 6112016, KZ20150020021), 111 Project(B13007)and Program for Changjiang Scholars and Innovative Research Team in University (IRT13047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunfu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Liu, M., Chen, Y. et al. Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress. Plant Growth Regul 79, 71–80 (2016). https://doi.org/10.1007/s10725-015-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0112-4

Keywords

Navigation