Skip to main content
Log in

Characterisation of two cold induced dehydrin genes from Cichorium intybus L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Two dehydrin genes were identified from a Cichorium intybus EST database. They were among the most abundant sequences obtained from 10 cDNA libraries constructed from chicory roots grown under field conditions. The full length cDNA sequences, designated CiDHN1 and CiDHN2, were 1,176 and 1,055 bp long and encoded predicted polypeptides of 262 and 261 amino acids, respectively. The deduced CiDHN1 protein contains a S-segment and four lysine-rich consensus motifs (K-segments) which represent a typical SK4 structure of dehydrins. The CiDHN2 sequence contains two Y motifs and two K-segments classifying CiDHN2 as Y2K2-type dehydrin. Southern-blotting analysis suggested that CiDHN1 and CiDHN2 are single copy genes. Northern-blotting analysis revealed that both CiDHN genes are expressed in roots and leaves, with seasonal variations in transcript accumulation. The effect of cold on the CiDHN1 and CiDHN2 transcript level was demonstrated. CiDHN1 and CiDHN2 promoter analysis revealed the presence of low temperature-responsive and ABA-responsive elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97:795–803

    Article  CAS  Google Scholar 

  2. Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry-Moscow 68:945–951

    Article  PubMed  CAS  Google Scholar 

  3. Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  4. Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  5. Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  6. Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs A (1991) Current and potential food and non-food applications of fructans. Redesigning crop products for biotechnology. Biochem Soc Trans 19:555–560

    PubMed  CAS  Google Scholar 

  8. Mendoza E, Garcia ML, Casas C, Selgas MD (2001) Inulin as fat substitute in low fat, dry fermented sausages. Meat Sci 57:387–393

    Article  CAS  Google Scholar 

  9. Robertfroid MB (2000) Chicory fructooligosaccarides and the gastrointestinal tract. Nutrition 16:677–679

    Article  Google Scholar 

  10. Koch K, Andersson R, Rydberg I, Aman P (1999) Influence of harvest date on inulin chain length distribution and sugar profile for six chicory (Cichorium intybus L.) cultivars. J Sci Food Agr 79:1503–1506

    Article  CAS  Google Scholar 

  11. Monti A, Amaducci MT, Pritoni G, Venturi G (2005) Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time and water regime. J Exp Bot 56:1389–1395

    Article  PubMed  CAS  Google Scholar 

  12. Wilson R, Smith J, Yonts C (2004) Chicory root yield and carbohydrate composition is influenced by cultivar selection, planting and harvest date. Crop Sci 44:748–752

    Google Scholar 

  13. Van Den Ende W, Michiels A, Van Wonterghem D, Clerens S, De Roover J, Van Laere A (2001) Defoliation induces fructan 1-exohydrolase II in witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase IIa and fructan 1-exohydrolase IIb. Mass fingerprint of the fructan 1-exohydrolase II enzymes. Plant Physiol 126:1186–1195

    Article  PubMed  Google Scholar 

  14. Van Den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A (2000) Cloning and functional analysis of chicory root fructan-1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant J 24:447–456

    Article  PubMed  Google Scholar 

  15. Van Laere A, Van Den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  16. Michiels A, Van Laere A, Van Den Ende W, Tucker M (2004) Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. J Exp Bot 55:1325–1333

    Article  PubMed  CAS  Google Scholar 

  17. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  18. Mingeot D, Jacquemin J (1999) Mapping of RFLP probes characterized for their polymorphism on wheat. Theor Appl Genet 98:1132–1137

    Article  CAS  Google Scholar 

  19. Feinberg AP, Vogelstein B (1983) A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  20. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  21. Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  22. Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cell 19:212–218

    Article  CAS  Google Scholar 

  23. Porat R, Pasentsis K, Rozentzvieg D, Gerasopoulos D, Falara V, Samach A, Lurie S, Kanellis AK (2004) Isolation of a dehydrin from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures. Physiol Plantarum 120:256–264

    Article  CAS  Google Scholar 

  24. Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin C, Mccarthy J (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora ‘Robusta’ grain development. Ann Bot-London 97:755–765

    Article  CAS  Google Scholar 

  25. Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  PubMed  CAS  Google Scholar 

  26. Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  27. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription RT activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  28. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene RT transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  29. Thomashow M (1999) Plant cold acclimatation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50:571–599

    Article  CAS  Google Scholar 

  30. Yamagushi-Shinozaki K, Shinozaki K (2004) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  Google Scholar 

  31. Rock C (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  32. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol 49:199–222

    Article  CAS  Google Scholar 

  33. Busk PK, Pages M (1998) Regulation of abscisic acid induced transcription. Plant Mol Biol 37:425–435

    Article  PubMed  CAS  Google Scholar 

  34. Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  PubMed  CAS  Google Scholar 

  35. Wisniewski ME, Bassett CL, Renaut J, Farrell R, Tworkoski T, Artlip T (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    PubMed  CAS  Google Scholar 

  36. Deng Z, Wang Y, Jiang K, Liu X, Wu W, Gao S, Lin J, Sun X, Tang K (2006) Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba. Biosci Rep 26:203–215

    Article  PubMed  CAS  Google Scholar 

  37. Rorat T, Szabala B, Grygorowicz W, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimatation in Solanum species. Planta 224:205–221

    Article  PubMed  CAS  Google Scholar 

  38. Puhakainen T, Li C, Boije-Palm M, Kangasjärvi J, Heino P, Palva T (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in Silver birch. Plant Physiol 136:4299–4307

    Article  PubMed  CAS  Google Scholar 

  39. Deng Z, Pang Y, Kong W, Chen Z, Wang X, Liu X, Pi Y, Sun X, Tang K (2005) A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. DNA Seq 16:28–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Baleux for technical assistance. This work was supported in part by grants 021/5175, 021/5377 and 021/5379 from the Walloon Region (DGTRE-Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Mingeot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingeot, D., Dauchot, N., Van Cutsem, P. et al. Characterisation of two cold induced dehydrin genes from Cichorium intybus L.. Mol Biol Rep 36, 1995–2001 (2009). https://doi.org/10.1007/s11033-008-9410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9410-5

Keywords

Navigation