Skip to main content
Log in

Validation of quantitative trait loci for biofortification traits and variability research on agro-morphological, physiological, and quality traits in dicoccum wheat (Triticum dicoccum Schrank.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Markers linked to quantitative trait loci (QTL)  must be validated in diverse genetic materials before they can be reliably used in molecular breeding programs. Here, 30 simple sequence repeat markers linked to QTL for grain iron content (GFeC), grain zinc content (GZnC), and grain protein content (GPC) were analyzed in 56 diverse dicoccum wheat genotypes. Seven markers were validated, including four (Xwmc617, Xbarc67, Xwmc283, Xgwm361) for grain iron content, one (Xbarc146) for both grain iron and protein contents; one more for grain protein (Xgwm408) and one for grain zinc content (Xgwm271). The segregating F2 population developed from the high-quality local landrace GPM DIC 87, and the high-yielding low-quality commercial cultivar (HW 1098) was used to revalidate the identified QTL-linked markers. As a result, Xgwm271 and Xbarc67 were re-validated in the F2 population, with values for phenotypic variation explained (PVE) of 56.50% and 72.78%, respectively. These two markers may serve as ideal candidates for molecular breeding programs to improve grain micronutrient contents. Additionally, the evaluation of the F2 population for agro-morphological, physiological, and quality traits, revealed large variability that can be useful for trait improvement. This population generated rare transgressive segregants with desirable allelic combinations that may be ideal for improving grain yield, grain quality, and physiological efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avivi L (1979) High grain protein content in wild tetraploid wheat triticum dicoccoides Korn. in proceedings of the fifth international wheat genetics symposium, New Delhi, India, 23–28 pp. 372–380

  • Biradar SS, Fyroj U, Desai SA, Patil MK, Krishnappa G, Chethan CK, Sudha T (2023) GGE biplot analysis of biofortification traits in relation to grain yield in landraces of tetraploid wheat (Triticum turgidum ssp. dicoccum). Genet Resour Crop Evol 1–15. https://doi.org/10.1007/s10722-023-01766-7

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet 382(9890):427–451

    Article  Google Scholar 

  • Burton GW, Dewane EH (1953) Estimating heritability in tall fescues (Festuca allamidiaceae) from replicated clonal material. Agron J 45:1476–1481

    Article  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and Iron concentrations in seeds of wild, primitive and modern Wheat. Food Nutr Bull 21(4):401–403

    Article  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and aegilops tauschii are the sources for high grain iron and zinc. Plant Breed 125:529–531

    Article  CAS  Google Scholar 

  • Crain J, Ortiz-Monasterio I, Raun B (2012) Evaluation of a reduced cost active NDVI sensor for crop nutrient management. J Sens 2012:582028

    Article  Google Scholar 

  • Darnton-Hill I, Webb P, Harvey PW, Hunt JM, Dalmiya N, Chopra M, Ball MJ, Bloem MW, de Benoist B (2005) Micronutrient deficiencies and gender: social and economic costs. Am J Clin Nutr 81(5):1198S-1205S

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk I, Yazici AM, Budak H et al (2007) Multiple QTL-effects of wheat GpcB1 locus on grain protein and micronutrient concentrations. Plant Physiol 129:635–643

    Article  CAS  Google Scholar 

  • Fyroj U, Biradar SS, Desai SA, Rudra Naik V, Patil MK, Lakkanagoudar S, Ram S, (2020) Triticum dicoccum schubler wheat: a potential source for wheat bio-fortification program. Inter J Chem Stud 8(5):1417–1422

    Article  CAS  Google Scholar 

  • Fyroj U (2017) Genetic variability studies for grain nutrients, yield and yield attributes in tetraploid wheat. M. Sc. (Agri) Thesis, Univ. Agric. Sci., Dharwad, Karnataka (India)

  • Genc Y, Verbyla A, Torun A, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Article  CAS  Google Scholar 

  • Gopalareddy K, Singh AM, Ahlawat AK, Singh GP, Jaiswal JP (2015) Genotype-environment interaction for grain iron and zinc concentration in recombinant inbred lines of a bread wheat (Triticum aestivum L.) cross. Indian J Genet Plant Breed 75:307–313

    Article  CAS  Google Scholar 

  • Von Grebmer K, Saltzman A, Birol E, Wiesman D, Prasai N, Yin S, Yohannes Y, Menon P, Thompson J, Sonntag A (2014) Synopsis: 2014 global hunger index: the challenge of hidden hunger Intl Food Policy Res Inst 83

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2021) Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor Appl Genet 134:1–35

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 6(4):315–324

    Article  Google Scholar 

  • Hammed AM, Simsek S (2014) Hulled wheat: a review of nutritional properties and processing methods. Cereal Chem 91:97–104

    Article  CAS  Google Scholar 

  • Hanson CH, Robinson HF, Comstock RE (1956) Biometrical studies on yield in segregating population of Korean lespedesa. Agron J 48:268–272

    Article  Google Scholar 

  • Johnson HW, Robinson HF, Comstock RE (1955) Estimation of genetic and environmental variability in soybeans. Agron J 47:314–318

    Article  Google Scholar 

  • Krebs NF, Miller LV, Michael Hambidge K (2014) Zinc deficiency in infants and children: a review of its complex and synergistic interactions. Paediatr Int Child Health 34(4):279–288

    Article  PubMed  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB, Jaiswal JP, Singh GP, Solanki IS (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L). PLoS ONE 12:e0174972

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnappa G, Singh AM, Ahlawat AK, Singh SK, Sharma P, Shukla RB, Singh GP (2018) Validation of QTLs for grain iron and zinc concentration in wheat (Triticum aestivum L). Indian J. Genet. Plant Breed. 78(03):378–381

    Google Scholar 

  • Krishnappa G, Ahlawat AK, Shukla RB, Singh SK, Singh SK, Singh AM, Singh GP (2019) Multi-environment analysis of grain quality traits in recombinant inbred lines of a biparental cross in bread wheat (Triticum aestivum L.). Cereal Res Commun 47(2):334–344

    Article  CAS  Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, Mishra CN, Khan H, Singh G, Singh GP (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113:1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Krishnappa G, Khan H, Krishna H, Kumar S, Mishra CN, Parkash O, Devate NB, Nepolean T, Rathan ND, Mamrutha HM, Srivastava P, Biradar S, Uday G, Kumar M, Singh G, Singh GP (2022) Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci Rep 12:12444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnappa G, Khan H, Krishna H, Devate NB, Kumar S, Mishra CN, Parkash O, Kumar S, Kumar M, Mamrutha HM, Singh GP (2023) Genome-wide association study for grain protein, thousand kernel weight, and normalized difference vegetation index in bread wheat (Triticum aestivum L.). Genes 14(3):637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnappa G, Mamrutha HM, Rathan ND, Khan H, Mishra CN, Kumar V, Reddy KV, Pandey V, Khobra R, Singh C, Yashavanthakumar KJ (2024) Micronutrient biofortification in wheat: status and opportunities. In wheat science (pp. 285–301). CRC Press

  • Lachman J, Orsak M, Pivec V, Jiru K (2012) Antioxidant activity of grain of einkorn (Triticum monococcum L.), emmer (Triticum dicoccum schuebl [Schrank]) and spring wheat (Triticum aestivum L.) varieties. Plant Soil Environ 58:15–21

    Article  CAS  Google Scholar 

  • Lephuthing MC, Tolmay VL, Baloyi TA, Hlongoane T, Oliphant TA, Tsilo TJ (2021) Relationship of grain micronutrient concentrations and grain yield components in a doubled haploid bread wheat (Triticum aestivum) population. Crop Pasture Sci 73:116–126

    Article  Google Scholar 

  • Listman M, Ordonez R (2019) Ten things you should know about maize and wheat. CIMMYT Batan, Mexico

    Google Scholar 

  • Liu J, Bihua W, Ravi PS, Govindan V (2019) QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J Cereal Sci 88:55–64

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production. Science 333(6042):616–620

    Article  CAS  PubMed  Google Scholar 

  • Manish K, Mishra VK, Gupta PK, Yadav PS, Kumar H, Joshi Arun AK (2014) Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-gangetic plains through marker assisted backcross breeding. Curr Plant Biol 1:60–67

    Article  Google Scholar 

  • Monasterio I, Graham R (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Moradi N, Badakhshan H, Mohammadzadeh H, Zakeri MR, Mirzaghaderi, (2014) Assessment of genetic diversity and identification of SSR markers associated with grain iron content in Iranian prevalent wheat genotypes. J Plant Mol Bred 2:64–73

    Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Cakmak OL, I, (2007) Iron and zinc grain density in common wheat grown in central asia. Euphytica 155(2):193–203

    Article  Google Scholar 

  • Paul AK, Islam MA, Hasan MJ, Chowdhury MMH (2006) Genetic variation of some morpho-physiological characters in Triticum durum wheat. Int J Sust Agril Tech 2(8):11–14

    Google Scholar 

  • Quarrie S, Quarrie PS, Radosevic R, Rancic D, Kaminska A (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rathan ND, Krishna H, Ellur RK, Sehgal D, Velu G, Ahlawat AK, Krishnappa G, Jaiswal JP, Singh JB, Saiprasad SV, Ambati D, Singh SK, Bajpai K, Mahendru-Singh A (2022) Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L). Sci Rep 12:7037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83(4):363–372

    Article  PubMed  Google Scholar 

  • Sharp PJ, Johnston S, Brown G, Mcintosh RA, Pallotta M, Carter M, Bariana HS, Khatkar S, Lagudah ES, Singh RP, Khairallah M, Potter R, Jones MGK (2001) Validation of molecular markers for wheat breeding. Aust J Agri Res 52:1357–1366

    Article  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a T. boeoticum × T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Narayanan SS (2013) Biometrical techniques in plant breeding. In. Kalyani publishers, India

  • Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336

    CAS  Google Scholar 

  • Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM (2022) Global micronutrient deficiencies research group micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual level data from population-representative surveys. Lancet Glob Health 10(11):1590–1599

    Article  Google Scholar 

  • Tazeen M, Nadia K, Farzana NN (2009) Heritability, phenotypic correlation and path co-efficient studies for some agronomic characters in synthetic elite lines of wheat. J Food Aric Environ 7(3):278–282

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Diaoguo A, Dongcheng L, Aimin Z, Hongxing X, Bin L (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res 38:57–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SSB, RK, RRH and SAD conceptualized the research plan. GK and RK carried out data analysis. MKP, LJ, UF, and KKM carried out the experimentation. GK and SR analysed grain iron, zinc and protein content. GK wrote the original draft and all authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Suma S. Biradar or Gopalareddy Krishnappa.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical statement

This investigation does not involve any research with animals at any stage of experimentation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Biradar, S.S., Patil, M.K. et al. Validation of quantitative trait loci for biofortification traits and variability research on agro-morphological, physiological, and quality traits in dicoccum wheat (Triticum dicoccum Schrank.). Genet Resour Crop Evol (2024). https://doi.org/10.1007/s10722-024-01973-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-01973-w

Keywords

Navigation