Skip to main content
Log in

SNP markers found in non-coding regions can distinguish among low-variant genotypes of Arabica and other coffee species

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Development of efficient and scalable methods for molecular identification of Coffea spp. are necessary to accelerate studies related to the characterization of germplasm for both conservation or breeding purposes, and the validation of coffee germplasm. The low genetic diversity of coffee hinders the establishment of protocols that facilitate the molecular characterization of a given genotype. In this study, nucleotide variability was analyzed at 22 loci in the genome of 19 coffee accessions using de novo primer sets and high-resolution melting (HRM). Single nucleotide polymorphisms (SNPs) variants were studied in coding regions of genes implicated in sucrose accumulation in the seed, Sucrose synthase 2 (SUS2), Ent-kaurene oxidase 1 (CaKO1), and Caffeoyl-coenzyme A 3-O-methyltransferase (CcOAOMT). The non-coding Internal transcribed spacer 2 (ITS2) region was also studied. Variability was shown at 103 positions both at the interspecies level (15 loci) and among varieties of Coffea arabica L. (4 loci). The HMR technique for identification of variants in genes CaKO1, SUS2, CcoAOMT, as well as in the ITS2 region proved to be a robust technique for germplasm characterization. More important this technique can be used for fingerprinting and traceability of coffee grain exports which is an increasing market-consumer demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alves G, Torres L, de Aquino S, Reichel T, Freire L, Vieira N, Vinecky F, This D, Pot D, Etienne H, Paiva L, Marraccini P, Andrade A (2018) Nucleotide diversity of the coding and promoter regions of DREB1D a candidate gene for drought tolerance in Coffea species. Trop Plant Biol 11:3148

    Article  Google Scholar 

  • Anthony F, Bertrand B, Quiros O (2001) Genetic diversity of wild coffee (Coffea arabica L) using molecular markers. Euphytica 118:53–65

    Article  CAS  Google Scholar 

  • Anthony F, Combes M, Astorga C, Bertrand B, Graziosi G, Lashermes P (2002) The origin of cultivated Coffea arabica L varieties revealed by AFLP and SSR markers. Theor Appl Genet 104:894–900

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis catabolism function and genetic engineering. Phytochemistry 69:841–856

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Guyot B, Anthony F, Lashermes P (2003) Impact of the Coffea canephora gene introgression on beverage quality of C arabica. Theor Appl Genet 107:387–394

    Article  CAS  PubMed  Google Scholar 

  • Bolívar-González A, Valdez-Melara M, Gatica-Arias A (2018) Responses of Arabica coffee (Coffea arabica L var Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions. In Vitro Cell Dev Biol Plant 54:576–589

    Article  Google Scholar 

  • Buddhachat K, Sripairoj N, Punjansing T, Kongbangkerd A, Inthima P, Tanming W, Kosavititkul P (2022) Species discrimination and hybrid detection in terrestrial orchids using Bar-HRM: a case of the Calanthe group. Plant Gene 29:100349. https://doi.org/10.1016/j.plgene.2021.100349

    Article  CAS  Google Scholar 

  • Chen W, Chen X, Xu J et al (2022) Identification of Dendrobium officinale using DNA barcoding method combined with HRM and qPCR technology. Food Anal Methods. https://doi.org/10.1007/s12161-021-02194-y

    Article  Google Scholar 

  • Cheng B, Furtado A, Smyth HE, Henry RJ (2016) Influence of genotype and environment on coffee quality. Trends Food Sci Technol 57:20–30

    Article  CAS  Google Scholar 

  • Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA (2015) Single nucleotide polymorphism identification in polyploids: a review example and recommendations. Mol Plant 8:831–846

    Article  CAS  PubMed  Google Scholar 

  • Combes MC, Joët T, Lashermes P (2018) Development of a rapid and efficient DNA-based method to detect and quantify adulterations in coffee (Arabica versus Robusta). Food Control 88:198–206

    Article  CAS  Google Scholar 

  • Cruz MFA, Bueno RD, Souza FB, Moreira MA, Barros EG (2013) Identificação de SNPs para conteúdo de ácidos graxos em soja pela técnica HRM. Pesqui Agropecu Bras 48:1596–1600

    Article  Google Scholar 

  • Cubry P, Musoli P, Legnate H (2008) Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51:50–63

    Article  CAS  PubMed  Google Scholar 

  • Dias-Guzzo S, Harakava R, Mui-Tsai S (2009) Identification of coffee genes expressed during systemic acquired resistance and incompatible interaction with Hemileia vastatrix. J Phytopathol 157:625–638

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ferreira T, Farah A, Oliveira T, Lima I, Vitório F, Oliveira E (2016) Using real-time PCR as a tool for monitoring the authenticity of commercial coffees. Food Chem 199:433–438

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Grazina L, Costa J, Amaral JS, Garino C, Arlorio M, Mafra I (2022) Authentication of carnaroli rice by HRM analysis targeting nucleotide polymorphisms in the Alk and Waxy genes. Food Control 135:108829. https://doi.org/10.1016/j.foodcont.2022.108829

    Article  CAS  Google Scholar 

  • Han Y, Khu DM, Monteros MJ (2012) High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L). Mol Breed 29:489–501

    Article  PubMed  Google Scholar 

  • Hong Y, Pandey MK, Liu Y, Chen X, Liu H, Varshney RK et al (2015) Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut (Arachis hypogaea L) based on amplicon sequencing combined with high resolution melting (HRM) analysis. Front Plant Sci 6:1068

    Article  PubMed Central  PubMed  Google Scholar 

  • Huq A, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK (2016) Identification of functional SNPs in genes and their effects on plant phenotypes. J Plant Biotech 43:1–11

    Article  Google Scholar 

  • International coffee organization (ICO) Monthly coffee market report (2021/22)

  • Jeong HJ, Jo YD, Park SW, Kang BC (2010) Identification of Capsicum species using SNP markers based on high resolution melting analysis. Genome 53:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Jingade P, Huded A, Kosaraju B, Mishra M (2019) Diversity genotyping of Indian coffee (Coffea arabica L) germplasm accessions by using SRAP markers. J Crop Improv 33(327):345

    Google Scholar 

  • Lashermes P, Combes M, Trouslot P, Charrier A (1997) Phylogenetic relationships of coffee-tree species (Coffea L) as inferred from ITS sequences of nuclear ribosomal DNA. Theor Appl Genet 94:947–955

    Article  CAS  Google Scholar 

  • Lashermes P, Andrzejewski S, Bertrand B (2000) Molecular analysis of introgressive breeding in coffee (Coffea arabica L). Theor Appl Genet 100:139–146

    Article  CAS  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression of HCT HQT C3H1 and CCoAOMT1 genes during grain development in C canephora. Plant Sci 172:978–996

    Article  CAS  Google Scholar 

  • Li J, Wei YL, Li YY, Pang L, Deng WW, Jiang CJ (2014) A correlation study of caffeine content with theobromine content cSNPs and transcriptional expression of three genes in tea plants. Crop Sci 54:1124–1132

    Article  CAS  Google Scholar 

  • Merot-L’anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L et al (2019) Development and evaluation of a genome-wide Coffee 85 K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J 17:1418–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno K, Matsuzaki M, Kanazawa S, Tokiwano T, Yoshizawa Y, Kato M (2014) Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B’ methyltransferase family in Coffea arabica. Biochem Biophys Res Commun 452:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Motta LB, Soares TCB, Ferrao MAG (2014) Molecular characterization of arabica and conilon coffee plants genotypes by SSR and ISSR markers. Braz Arch Biol Technol 57:728–735

    Article  CAS  Google Scholar 

  • Nie X, Dickison VL, Brooks S, Nie B, Singh M, De Koeyer DL, Murphy AM (2018) High resolution DNA melting assays for detection of Rx1 and Rx2 for high-throughput marker-assisted selection for extreme resistance to potato virus X in tetraploid potato. Plant Dis 102:382–390

    Article  CAS  PubMed  Google Scholar 

  • Pereira LF, Ivamoto S (2015) Characterization of coffee genes involved in isoprenoid and diterpene metabolic pathways. In: Preedy V (ed) Coffee in health and disease prevention. Academic Press, London, pp 45–51

    Chapter  Google Scholar 

  • Petitot A, Barsalobres-Cavallari C, Ramiro D, Albuqerque F, Etienne H, Fernandez D (2013) Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Rep 32:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C, Tanksley S, Foyer C, McCarthy J (2008) Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. New Phytol 178:781–797

    Article  CAS  PubMed  Google Scholar 

  • Romero G, Alvarado G, Cortina H, Ligarreto G, Galeano N (2010) Partial resistance to leaf rust (Hemileia vastatrix) in coffee (Coffea arabica L): genetic analysis and molecular characterization of putative candidate genes. Mol Breed 25:685–697

    Article  Google Scholar 

  • Ságio S, Barreto H, Lima A, Moreira R, Rezende P, Paiva L, Chalfun-Junior A (2014) Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta 239:951–963

    Article  PubMed  Google Scholar 

  • Sánchez E, Solano W, Gatica-Arias A, Chavarría M, Araya-Valverde E (2020) Microsatellite DNA fingerprinting of Coffea sp germplasm conserved in Costa Rica through singleplex and multiplex PCR. Crop Breed Appl Biot 20:e27812013

    Article  Google Scholar 

  • Santa Lucia J (1998) A Unified view of polymer dumbbell and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci 95:1460–1465

    Article  CAS  PubMed  Google Scholar 

  • Scalabrin S, Toniutti L, Di Gaspero G, Scaglione D, Magris G, Vidotto M et al (2020) A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Sci Rep 10:1–13

    Article  Google Scholar 

  • Simkin A, Kuntz M, Moreau H, McCarthy J (2010) Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant Physiol Biochem 48:434–442

    Article  CAS  PubMed  Google Scholar 

  • Simko I (2016) High-resolution DNA melting analysis in plant research. Trends Plant Sci 21:528–537

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Irikura B, Nagai C, Albert H, Kumagi M, Paull R, Moore P, Wang M (2011) Characterization of prolyl oligopeptidase genes differentially expressed between two cultivars of Coffea arabica L. Trop Plant Biol 4:203–216

    Article  Google Scholar 

  • Sousa TV, Caixeta ET, Alkimim ER, de Oliveira ACB, Pereira AA, Zambolim L, Sakiyama NS (2017) Molecular markers useful to discriminate Coffea arabica cultivars with high genetic similarity. Euphytica 213:75

    Article  Google Scholar 

  • Szurman-Zubrzycka M, Chmielewska B, Gajewska P, Szarejko I (2017) Mutation detection by analysis of DNA heteroduplexes in TILLING populations of diploid species. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till, BJ (eds) Biotechnologies for plant mutation breeding, (Springer International Publishing, Cham), https://doi.org/10.1007/978-3-319-45021-6_18

  • Tran HTM, Furtado A, Vargas CAC, Smyth H, Slade-Lee L, Henry R (2018) SNP in the Coffea arabica genome associated with coffee quality. Tree Genet Genomes 14:72

    Article  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas-Segura C, López-Gamboa E, Araya-Valverde E, Valdez-Melara M, Gatica-Arias A (2019) Sensitivity of Seeds to chemical mutagens detection of DNA polymorphisms and agro-metrical traits in M1 generation of coffee (Coffea arabica L). J Crop Sci Biotechnol 22:451–464

    Article  Google Scholar 

  • van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of Arabica coffee (Coffea arabica L): a review. Euphytica 204(2):243–256

    Article  Google Scholar 

  • Weckx S, Del-Favero J, Rademakers R, Claes L, Cruts M, De Jonghe P, Van Broeckhoven C, De Rijk P (2005) novoSNP a novel computational tool for sequence variation discovery. Genome Res 15:436–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • World coffee research (2018). Las variedades del café arábica. Un catálogo global de variedades que abarca: Costa Rica, El Salvador, Guatemala, Honduras, Jamaica, Kenia, Malawi, Nicaragua, Panamá, Perú, República Dominicana, Rwanda, Uganda, Zambia, Zimbabue. Available at https://varieties.worldcoffeeresearch.org/es/varieties Access on 5th Apr 2022

  • Wu SB, Tavassolian I, Rabiei G, Hunt P, Wirthensohn M, Gibson JP, Ford CM, Sedgley M (2009) Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genomics 282:273–281

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 5:e13102

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Vega F, Infante F, Solano W, Johnson E, Meinhardt L (2020) Accurate differentiation of green beans of Arabica and Robusta coffee using nanofluidic array of single nucleotide polymorphism (SNP) markers. J AOAC Int 103:315–324

    Article  PubMed  Google Scholar 

  • Zhang D, Vega FE, Solano W, Su F (2021) Infante F Meinhardt LW Selecting a core set of nuclear SNP markers for molecular characterization of Arabica coffee (Coffea arabica L) genetic resources. Conserv Genet Resour 13:329–335

    Article  CAS  Google Scholar 

  • Zhou L, Vega F, Tan H, Lluch A, Fang ML, Mischke W, Irish S, Zhang B, D, (2016) Developing single nucleotide polymorphism (SNP) markers for the identification of coffee germplasm. Trop Plant Biol 9:82–95

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Q, Hu J, Zhu L, Wang J, Zhu S, Guan Y (2013) High resolution melting analysis; an efficient method for fingerprinting of hybrid rice cultivars and their parental lines. Aust J Crop Sci 7:2048–2053

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Centro Nacional de Alta Tecnología-Consejo Nacional de Rectores” (CeNAT-CONARE) and “Sistema de Estudios de Posgrado de la Universidad de Costa Rica” (SEP-UCR) for the grant awarded to A.B-G. Moreover, we thank the anonymous reviewers for their helpful comments on this manuscript.

Funding

This research was financed by the University of Costa Rica and the “Ministerio de Ciencia, Tecnología y Telecomunicaciones” (MICITT) (project No. 111-B5-140).

Author information

Authors and Affiliations

Authors

Contributions

A.B-G. designed and performed the experiments, analyzed data, and wrote the draft manuscript; A.G-A conceived the project, designed and coordinated the experiments, analyzed data, and edited the final manuscript; E.A-V. provided fundamental feedback of experiments execution, discussed the results, and edited the final manuscript; R.M.-B. provided fundamental feedback of experiments execution, discussed the results, and edited the final manuscript; W.S–S provided the plant material, and edited the final manuscript; S.T.I-S and L.F.P.P revised and edited the final manuscript.

Corresponding author

Correspondence to Andrés Gatica-Arias.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolívar-González, A., Molina-Bravo, R., Solano-Sánchez, W. et al. SNP markers found in non-coding regions can distinguish among low-variant genotypes of Arabica and other coffee species. Genet Resour Crop Evol 70, 1215–1228 (2023). https://doi.org/10.1007/s10722-022-01498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01498-0

Keywords

Navigation