Skip to main content
Log in

Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, this work aimed to characterize the putative members of the coffee (Coffea arabica) ethylene biosynthesis and signaling pathways, as well as to analyze the expression patterns of these members during fruit ripening of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Reverse Transcription-qPCR analysis of the four biosynthesis genes (CaACS1-like; CaACO1-like; CaACO4-like e CaACO5-like) analyzed in this study showed that CaACO1-like and CaACO4-like displayed an expression pattern typically observed in climacteric fruits, being up-regulated during ripening. CaACS1-like gene expression was also up-regulated during fruit ripening of both cultivars, although in a much lesser extent when compared to the changes in CaACO1-like and CaACO4-like gene expression. CaACO5-like was only induced in raisin fruit and may be related to senescence processes. On the other hand, members of the ethylene signaling pathway (CaETR1-like, CaETR4-like, CaCTR2-like, CaEIN2-like, CaEIN3-like, CaERF1) showed slightly higher expression levels during the initial stages of development (green and yellow-green fruits), except for the ethylene receptors CaETR1-like and CaETR4-like, which were constitutively expressed and induced in cherry fruits, respectively. The higher ethylene production levels in Catucaí 785-15 fruits, indicated by the expression analysis of CaACO1-like and CaACO4-like, suggest that it promotes an enhanced CaETR4-like degradation, leading to an increase in ethylene sensitivity and consequently to an earliness in the ripening process of this cultivar. Ethylene production in Acauã fruits may not be sufficient to inactivate the CaETR4-like levels and thus ripening changes occur in a slower pace. Thus, the expression analysis of the ethylene biosynthesis and signaling genes suggests that ethylene is directly involved in the determination of the ripening time of coffee fruits, and CaACO1-like, CaACO4-like and CaETR4-like may display essential roles during coffee fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RT-qPCR:

Reverse transcription-qPCR

ACC:

S-adenosylmethionine to 1-aminocyclopropane-1carboxylic acid

ACS:

ACC synthase = 1-aminocyclopropane-1-carboxylate synthase

ACO:

ACC oxidase = 1-aminocyclopropane-1-carboxylate oxidase

C t :

Threshold constant

CTR1:

Constitutive triple response 1

DAF:

Days after flowering

ETR1:

Ethylene receptor 1

EIN2:

Ethylene insensitive 2

EIN3:

Ethylene insensitive 3

EIL:

EIN3-like

ERF:

Ethylene response factor

EST:

Expressed sequence tag

ORF:

Open-reading frame

TFs:

Transcriptional factors

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Achard P, Baghour M, Chapple et al (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104:6484–6489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Adams-Phillips L, Barry C, Kannan P et al (2004) Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol 54:387–404

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Takashi H, Roman G et al (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Anjanasree KN, Verma PK, Bansal KC (2005) Differential expression of tomato ACC oxidase gene family in relation to fruit ripening. Curr Sci 89:1394–1399

    CAS  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A et al (2009) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotech Adv 28:94–107

    Article  CAS  Google Scholar 

  • Barreto HG, Lazzari F, Ságio SA et al (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Mol Biol Rep 30:29–35

    Article  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AD, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP et al (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bustamante-Porras J, Poncet V, Campa C et al (2007) Characterization of three ethylene receptor genes in Coffea canephora Pierre. In: Ramina A, Chang C, Giovannoni J et al (eds) Advances in plant ethylene research: proceedings of the 7th international symposium on the plant hormone ethylene, pp 53–56

  • Carvalho GR, Mendes ANG, Carvalho LF et al (2003) Eficiência do ethephon na uniformização e antecipação da maturação de frutos de cafeeiro (Coffea arabica L.) e na qualidade da bebida. Ciênc Agrotec 27:98–106

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple method for isolating RNA from pine trees. Plant Mol Biol 11:113–116

    Article  CAS  Google Scholar 

  • Chao QM, Rothenberg M, Solano R et al (1997) Activation of the ethylene gas response pathway in arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Springer, Dordrecht

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1999) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 96:10943

    Google Scholar 

  • El-Sharkawy I, Kim WS, El-Kereamy A et al (2007) Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot 58:3631–3643

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Kim WS, Jayasankar S et al (2008) Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot 59:2009–2027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Farnezi MMM, Silva EB, Guimarães PTG et al (2010) Levantamento da qualidade da bebida do café e avaliação do estado nutricional dos cafeeiros do Alto Jequitinhonha, Minas Gerais, através do DRIS. Ciênc Agrotec 34:1191–1198

    Article  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–180

    Article  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Guo HW, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Hu ZL, Deng L, Chen Q et al (2010) Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russ J Plant Physiol 57:554–559

    Article  CAS  Google Scholar 

  • Hu HL, Do YY, Huang PL (2012) Expression profiles of a MhCTR1 gene in relation to banana fruit ripening. Plant Physiol Biochem 56:47–55

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S et al (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in arabidopsis. Plant Cell 10:1321–1332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Gen Res 9:868–877

    Article  CAS  Google Scholar 

  • Huang YLH, Hutchison CE, Larskey J et al (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci USA 91:8925–8929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491

    Article  PubMed Central  PubMed  Google Scholar 

  • Kevany BM, Tieman DM, Taylor MG et al (2007) Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458–467

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G et al (1993) CTR1, A negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein-kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ (2002) Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53:2057–2063

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucl Acids Res 28:960–967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leclercq J, Adams-Phillips LC, Zegzouti H et al (2002) LeCTR1, a tomato CTR1-Like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol 130:1132–1142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lelievre JM, Latche A, Jones B et al (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739

    Article  CAS  Google Scholar 

  • Li Y, Zhu B, Xu W et al (2007) LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep 26:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Lima AA, Ságio SA, Chalfun-Junior A et al (2011) In silico characterization of putative members of the coffee (Coffea arabica) ethylene signaling pathway. Genet Mol Res 10:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Hackett RM, Payton S et al (1998) A tomato sequence, TCTR2 (accession no. AJ005077), encoding an Arabidopsis CTR1 homologue. Plant Physiol 117:1126

    Google Scholar 

  • Mbeguie-A-Mbeguie D, Hubert O, Fils-Lycaon B et al (2008) EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine). Physiol Plant 133:435–448

    Article  PubMed  CAS  Google Scholar 

  • Mccarthy DL, Capitani G, Feng L et al (2001) Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant. Biochemistry 40:12276–12284

    Article  PubMed  CAS  Google Scholar 

  • Mcmurchie EJ, Mcglasson WB, Eaks IL (1972) Treatment of fruit with propylene gives information about the bio- genesis of ethylene. Nature 237:235–236

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T et al (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H et al (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohmetakagi M, Shinshi H (1995) Ethylene-inducible dna-binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  Google Scholar 

  • Oliveira RR, Chalfun-Junior A, Paiva LV et al (2010) In silico and quantitative analyses of MADS-Box genes in Coffea arabica. Plant Mol Biol Rep 28:460–472

    Article  CAS  Google Scholar 

  • Paula MFB, Ságio SA, Lazzari F et al (2012) Efficiency of RNA extraction protocols in different types of coffee plant tissues. Coffee Sci 7:284–293

    Google Scholar 

  • Pereira LFP, Galvão RM, Kobayashi AK et al (2005) Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Braz J Plant Physiol 17:283–289

    Article  CAS  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  PubMed  CAS  Google Scholar 

  • Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr 47:1–19

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Chang KN, Yazaki N et al (2009) Interplay between ethylene, ETP1/ETP2 F- box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gen Dev 23:512–521

    Article  CAS  Google Scholar 

  • Qiao H, Shen Z, Huang SS et al (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rasori A, Ruperti B, Bonghi P et al (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Reuber L et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Roeder AH, Ferrándiz C, Yanosfsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Ruperti B, Bonghi C, Rasori A et al (2001) Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant 111:336–344

    Article  PubMed  CAS  Google Scholar 

  • Ságio SA, Lima AA, Barreto HG et al (2013) Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiol Plant. doi:10.1007/s11738-013-1342-6

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salmona J, Dussert S, Descroix F et al (2008) Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66:105–124

    Article  PubMed  CAS  Google Scholar 

  • Scudeler F, Raetano CG, Araújo D et al (2004) Cobertura da pulverização e maturação de frutos do cafeeiro com Ethephon em diferentes condições operacionais. Bragantia 63:129–139

    Article  CAS  Google Scholar 

  • Sell S, Hehl R (2005) A fifth member of the tomato 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced. DNA Seq 16:80–82

    Article  PubMed  CAS  Google Scholar 

  • Sharma MK, Kumar R, Solanke AU et al (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Gen 284:455–475

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Wang H, Brandt AS, Woodson WR (1993) Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol 23:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Van de Poel B, Bulens I, Markoula A et al (2012) Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol 160:1498–1514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • Wang A, Tan D, Takahashi A et al (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  PubMed  CAS  Google Scholar 

  • Wiersma PA, Zhang H, Lu C et al (2007) Survey of the expression of genes for ethylene synthesis and perception during maturation and ripening of ‘Sunrise’ and ‘Golden Delicious’ apple fruit. Postharvest Biol Technol 44:204–211

    Article  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K et al (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Chen K, Allan AC et al (2008) Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J Exp Bot 59:2097–2108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yin XR, Allan AC, Chen K et al (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yokotani N, Tamura S, Nakano R et al (2003) Characterization of a novel tomato EIN3-like gene (LeEIL4). J Exp Bot 54:2775–2776

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nagata M, Wang KL et al (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol 10:5–14

    Google Scholar 

  • Zhang ZJ, Zhang H, Quan R et al (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang J, Quan R et al (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237:1443–1451

    Article  PubMed  CAS  Google Scholar 

  • Zhou HL, Cao W, Cao Y et al (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–1250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chalfun-Junior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ságio, S.A., Barreto, H.G., Lima, A.A. et al. Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta 239, 951–963 (2014). https://doi.org/10.1007/s00425-014-2026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2026-1

Keywords

Navigation