Skip to main content
Log in

The strain gradient viscoelasticity full field solution of mode-III crack problem

  • Research
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The size and viscosity effects are noticeable at the micro-/nano scale. In the present work, the strain gradient viscoelastic solution of the mode-III crack in an infinite quasi-brittle advanced material is proposed based on the strain gradient viscoelasticity theory using the Wiener–Hopf method. The solutions to the gradient-dependent viscoelastic crack problem are obtained directly by using the correspondence principle between the strain gradient viscoelasticity and strain gradient elasticity in Maxwell’s standard linear solid model. In this model, the stress near the crack tip is time-dependent and size-dependent. Besides, the stress near the crack tip is more significant than that based on gradient elasticity theory. Compared with the elastic strain gradient effect, the viscous gradient effect makes the stress field at the crack tip harden. The location and the value of maximum stress change with time, which differs from the case in strain gradient elasticity theory. The time that the normalized stress takes to stabilize also changes with the distance from the crack tip. When the viscosity effect is neglected or time tends to infinity, the strain gradient viscoelasticity theory can be reduced to the classical strain gradient elasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process. He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Funding

This work was supported by the National Natural Science Foundation of China with grant nos. 11890681, 12032001, 11521202, and 11672301.

Author information

Authors and Affiliations

Authors

Contributions

K.D., Z.L. and Y.W. conceived and designed the project. K.D. and Y.W drafted the article and revised it critically. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yueguang Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Lin, Z. & Wei, Y. The strain gradient viscoelasticity full field solution of mode-III crack problem. Int J Fract 242, 71–83 (2023). https://doi.org/10.1007/s10704-023-00702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-023-00702-1

Keywords

Navigation