Skip to main content
Log in

Asymptotic Fracture Modes in Strain-Gradient Elasticity: Size Effects and Characteristic Lengths for Isotropic Materials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Size-effects characterize the fracture process of many engineering materials. Their modelling calls for material constitutive relations which are not indifferent, as standard elasticity, to variations of scale: strain-gradient elasticity or plasticity have often served the purpose.

The three classical crack opening problems of fracture mechanics are here solved within the framework of linear strain-gradient elasticity for the most general isotropic material. Apart from the Lamé constants, this is completely identified by five additional moduli, modelling its micro-structural characteristics. This general setting allows for recovering, as particular cases, previous analyses in (Gourgiotis and Geogiadis in J. Mech. Phys. Solids 57(11): 1898–1920, 2009), relative to modes I and II for the so-called Simplified Mindlin materials (17), and in (Radi in Int. J. Solids Struct. 45(10): 3033–3058, 2008), relative to mode III for couple-stress materials. More importantly, having a rather refined material description allows for understanding how the energy release rate is affected by the actual values of the characteristic lengths. Hence we demonstrate the strengthening effect of suitable microstructures and their optimality in order to provide cohesive like actions on the crack lips.

Despite being limited to the linear elastic hypothesis, the solutions found constitute an useful insight to develop more complex, possibly nonlinear, constitutive relationships for the strain-gradient terms as for plastic or viscoelastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The shearing mode (44) could be treated similarly.

References

  1. Anthoine, A.: Inertie de flexion d’une section circulaire selon la thèorie du second gradient. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron. 326(4), 233–236 (1998)

    MATH  Google Scholar 

  2. Aravas, N., Giannakopoulos, A.E.: Plane asymptotic crack-tip solutions in gradient elasticity. Int. J. Solids Struct. 46(25–26), 4478–4503 (2009)

    Article  MATH  Google Scholar 

  3. Bailey, N.P., Sethna, J.P.: Macroscopic measure of the cohesive length scale: fracture of notched single-crystal silicon. Phys. Rev. B 68, 205204 (2003)

    Article  ADS  Google Scholar 

  4. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  5. Begley, M.R., Hutchinson, J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46(10), 2049–2068 (1998)

    Article  ADS  MATH  Google Scholar 

  6. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bouchaud, E.: Scaling properties of cracks. J. Phys. Condens. Matter 9, 4319–4344 (1997)

    Article  ADS  Google Scholar 

  8. Bouchaud, E., Boivin, D., Pouchou, J.L., Bonamy, D., Poon, B., Ravichandran, G.: Fracture through cavitation in a metallic glass. Europhys. Lett. 83(6), 66006 (2008)

    Article  ADS  Google Scholar 

  9. Bouchbinder, E., Livne, A., Fineberg, J.: The 1/r singularity in weakly nonlinear fracture mechanics. J. Mech. Phys. Solids 57, 1568–1577 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bourdin, B., Francfort, G., Marigo, J.J.: Numerical experiments in revised brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Célarié, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E., Guillot, C., Marlière, C.: Glass breaks like metal, but at the nanometer scale. Phys. Rev. Lett. 90(7), 075504 (2003)

    Article  ADS  Google Scholar 

  13. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc., Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Drugan, W.J., Willis, J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Eshel, N.N., Rosenfeld, G.: Effects of strain-gradient on the stress-concentration at a cylindrical hole in a field of uniaxial tension. J. Eng. Math. 4, 97–111 (1970)

    Article  MATH  Google Scholar 

  16. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001)

    Article  ADS  MATH  Google Scholar 

  17. Gao, H., Rice, J.R.: A first-order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech. 111, 828–836 (1989)

    Article  Google Scholar 

  18. Georgiadis, H.G., Vardoulakis, I.: Anti-plane shear Lamb’s problem treated by gradient elasticity with surface energy. Wave Motion 28, 353–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie du second gradient. J. Méc. 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  20. Gourgiotis, P., Sifnaiou, M., Georgiadis, H.: The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity. Int. J. Fract. 166(1–2), 179–201 (2010)

    Article  Google Scholar 

  21. Gourgiotis, P.A., Georgiadis, H.G.: Distributed dislocation approach for cracks in couple-stress elasticity: shear modes. Int. J. Fract. 147, 83–102 (2007)

    Article  MATH  Google Scholar 

  22. Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57(11), 1898–1920 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Han, K., Ciccotti, M., Roux, S.: Measuring nanoscale stress intensity factors with an atomic force microscope. Europhys. Lett. 89(6), 66003 (2010)

    Article  ADS  Google Scholar 

  24. Hori, M., Nemat-Nasser, S.: Interacting micro-cracks near the tip in the process zone of a macro-crack. J. Mech. Phys. Solids 35, 601–629 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. Huang, Y., Xue, Z., Gao, H., Nix, W.D., Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15(8), 1786–1796 (2000)

    Article  ADS  Google Scholar 

  26. Hui, C.Y., Ruina, A.: Why k? High order singularities and small scale yielding. Int. J. Fract. 72, 97–120 (1995)

    Google Scholar 

  27. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  28. Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Muhlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure. Wiley, New York (1995)

    Google Scholar 

  29. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13–14), 1157–1184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mindlin, R.D., Eshel, N.N.: On first-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  32. Pijaudier-Cabot, G., Bazant, Z.P.: Non local damage theory. J. Eng. Mech. 113(10), 1512–1533 (1987)

    Article  Google Scholar 

  33. Podio-Guidugli, P., Vianello, M.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22(3), 163–176 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Radi, E.: On the effects of characteristic lengths in bending and torsion on Mode III crack in couple stress elasticity. Int. J. Solids Struct. 45(10), 3033–3058 (2008)

    Article  MATH  Google Scholar 

  35. Schmittbuhl, J., Roux, S., Vilotte, J.P., Maloy, K.J.: Interfacial crack pinning: effect of nonlocal interactions. Phys. Rev. Lett. 74(10), 1787–1790 (1995)

    Article  ADS  Google Scholar 

  36. Sciarra, G., Vidoli, S.: The role of edge forces in conservation laws and energy release rates of strain-gradient solids. Math. Mech. Solids 17(3), 266–278 (2011)

    Article  MathSciNet  Google Scholar 

  37. Shen, B., Paulino, G.H.: Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp. Mech. 51, 143–163 (2011)

    Article  Google Scholar 

  38. Sokolowski, M.: Theory of Couple-Stresses in Bodies with Constrained Rotations. CISM Courses and Lectures, vol. 26. Springer, Berlin (1972)

    MATH  Google Scholar 

  39. van Mier, J.G.M., van Vliet, M.R.A.: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art. Eng. Fract. Mech. 69, 235–247 (2002)

    Article  Google Scholar 

  40. Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 74, 526–528 (1952)

    Google Scholar 

  41. Zhang, L., Huang, Y., Chen, J.Y., Hwang, K.C.: The mode iii full-field solution in elastic materials with strain gradient effects. Int. J. Fract. 92(4), 325–348 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vidoli.

Appendices

Appendix A

As suggested by Fig. 1 the actual crack opening displacement (COD) results from a matching between the asymptotic solution (37), which on the upper lip θ=π, reads:

$$ w_a(r)= C_{I\!\!I\!\!I} \biggl( \dfrac{3}{16 (\ell_{s}/\ell_t)^2-3}+1 \biggr) r^{3/2}, $$
(60)

and the far-field solution suitably shifted by a distance b; this last, again on the lip θ=π, reads \(w_{f}(r) \propto K_{I\!\!I\! \!I} \sqrt{r-b}\). We estimate the distance d by asking the C 1 continuity between the two CODs and the equality of the strain and strain-gradient energies. These requests are tantamount to solve the three equations:

$$ w_a(d)=w_f(d),\qquad \dfrac{\partial w_a}{\partial r} \bigg|_{d} =\dfrac {\partial w_f}{\partial r}\bigg|_{d},\qquad \psi_2(w_a) (d)=\psi_1(w_f) (d), $$
(61)

in the three unknowns d, b and C III /K III ; here ψ 1 and ψ 2 account respectively for the strain and strain-gradient energy densities. For the antiplane case one easily obtain:

$$ d = \dfrac{\ell_t \sqrt{3} }{16 \sqrt{2}} \sqrt{\dfrac{\ell_t^4}{\ell_s^4}-32 \dfrac{\ell_t^2}{\ell_s^2}+128 }, $$
(62)

which is plotted in Fig. 4. A similar reasoning allows to estimate d for the inplane and shear opening modes, see Fig. 5.

Appendix B

We report the expression for the constants in (44), (45) and (45), together with their specialization to couple-stress materials (15) and to Simplified Mindlin materials (17). In particular, the k constants in Eqs. (44)–(45) are:

(63)

with

(64)

The expressions for the J-integral in (57) are:

(65)
(66)
(67)

where \(\varDelta = (5 \ell_{e}^{2}+3 \ell_{s}^{2} )^{2} (9 \ell_{b}^{2}+24 \gamma_{3}+16 (\ell_{e}^{2}-9 \ell_{s}^{2} ) ) (-15 \ell_{b}^{2}+40 \gamma_{3}+16 (\ell_{e}^{2}+15 \ell_{s}^{2} ) )^{2}\).

For the constitutive case (15), Eqs. (63) reduce to:

(68)

while clearly J 22=J 24=J 44=0 as e =0 in (15).

For the SM materials (17), Eqs. (63) reduce to:

(69)

while

(70)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciarra, G., Vidoli, S. Asymptotic Fracture Modes in Strain-Gradient Elasticity: Size Effects and Characteristic Lengths for Isotropic Materials. J Elast 113, 27–53 (2013). https://doi.org/10.1007/s10659-012-9409-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9409-y

Keywords

Mathematics Subject Classification (2010)

Navigation