Skip to main content
Log in

Stationary and propagating cracks in a strain gradient visco-plastic solid

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A first order visco-plastic strain gradient constitutive model and a cohesive zone formulation are embedded within a modified boundary layer (MBL) model for the analysis of crack tip fields and crack growth. The MBL model is loaded using a mode I asymptotic crack tip solution, with the boundary displacement calculated from the stress intensity factor. The influence of the rate-dependent constitutive parameters and the intrinsic material length on fracture relevant quantities are investigated in parametric study. Two scenarios are considered: (1) a stationary crack under constant loading and (2) a crack advance under monotonic loading. Finite element model analyzes are performed. For stationary cracks it was found that the effects of the intrinsic lengthscale of the strain gradient plasticity model are more prominent for large visco-plastic power exponents, and increase with hold time. The results of computations of crack advances under monotonic loading suggest that plastic strain gradients reduce crack growth resistance and crack initiation toughness, especially for a large visco-plastic power exponent. For small values of intrinsic material length the dependence of the initiation toughness and tearing modulus on the intrinsic length is strong, but then saturates for large values of intrinsic material length. Loading rate effects are found to be more pronounced for cases with a small value of the intrinsic lengthscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • Bassani JL, Hawk DE (1990) Influence of damage on crack-tip fields under small-scale-creep conditions. Int J Fract 42:157–172

    Article  Google Scholar 

  • Benz J, Carroll LJ, Wright JK, Wright RN, Lillo T (2014) Threshold stress creep behavior of alloy 617 at intermediate temperatures. Metall Mater Trans 45A:3010–3022

    Article  Google Scholar 

  • Borg U, Niordson CF, Fleck NA, Tvergaard V (2006) A viscoplastic strain gradient analysis of materials with voids or inclusions. Int J Solids Struct 43:4906–4916

    Article  Google Scholar 

  • Bouvard JL, Chaboche JL, Feyel F, Gallerneau F (2009) A cohesive zone model for fatigue and creepfatigue crack growth in single crystal superalloys. Int J Fatigue 31:868–879

    Article  Google Scholar 

  • Chen JY, Wei Y, Huang Y, Hutchinson JW, Hwang KC (1999) The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses. Eng Fract Mech 64:625–648

    Article  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 41:2245–2271

    Article  Google Scholar 

  • Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theoryPart I: scalar plastic multiplier. J Mech Phys Solids 57:161–177

    Article  Google Scholar 

  • François D, Pineau A, Zaoui A (2012) Mechanical behavior of materials: volume II: fracture mechanics and damage, vol 191. Springer, Berlin

  • Fredriksson P, Gudmundson P (2005) Size-dependent yield strength and surface energies of thin films. Mat Sci Eng A 400:448–450

    Article  Google Scholar 

  • Gan M, Tomar V (2010) Role of length scale and temperature in indentation induced creep behavior of polymer derived Si–C–O ceramics. Mat Sci Eng A 527:7615–7623

    Article  Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  • Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52:1379–1406

    Article  Google Scholar 

  • Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50:5–32

    Article  Google Scholar 

  • Gurtin ME (2003) On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int J Plast 19:47–90

    Article  Google Scholar 

  • Huang Y, Chen J, Guo T, Zhang L, Huang KC (1999) Analytic and numerical studies on mode I and mode II fracture in elastic-plastic materials with strain gradient effects. Int J Fract 100:1–27

  • Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48:99–128

    Article  Google Scholar 

  • Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20:753–782

    Article  Google Scholar 

  • Landis CM, Pardoen T, Hutchinson JW (2000) Crack velocity dependent toughness in rate dependent materials. Mech Mater 32:663–678

    Article  Google Scholar 

  • Lele SP, Anand L (2008) A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos Mag 88:3655–3689

    Article  Google Scholar 

  • Lele SP, Anand L (2009) A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int J Plast 25:420–453

    Article  Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness of silver single crystals. J Mater Res 10:853–863

    Article  Google Scholar 

  • Martínez-Pañeda E, Betegón C (2015) Modeling damage and fracture within strain-gradient plasticity. Int J Solids Struct 59:208–215

    Article  Google Scholar 

  • Martínez-Pañeda E, Niordson C (2016) On fracture in finite strain gradient plasticity. Int J Plast 80:154–167

    Article  Google Scholar 

  • McGarry JP, Máirtín ÉÓ, Parry G, Beltz G (2014) Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. J Mech Phys Solids 63:336–362

    Article  Google Scholar 

  • McMeeking RM, Parks DM (1979) On criteria for J-dominance of crack-tip fields in large-scale yielding. In: Elastic-plastic fracture, STP 668, pp 175–197. ASTM International

  • Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract 42:21–40

    Article  Google Scholar 

  • Needleman A (1992) Micromechanical modelling of interfacial decohesion. Ultramicroscopy 40:203–214

    Article  Google Scholar 

  • Nielsen KL, Niordson CF (2012) Rate sensitivity of mixed mode interface toughness of dissimilar metallic materials: studied at steady state. Int J Solids Struct 49:576–583

    Article  Google Scholar 

  • Nielsen KL, Niordson CF, Hutchinson JW (2012) Strain gradient effects on steady state crack growth in rate-sensitive materials. Eng Fract Mech 96:61–71

    Article  Google Scholar 

  • Nielsen KL, Niordson CF (2014) A numerical basis for strain-gradient plasticity theory: rate-independent and rate-dependent formulations. J Mech Phys Solids 63:113–127

  • Niordson CF, Redanz P (2004) Size-effects in plane strain sheet-necking. J Mech Phys Solids 52:2431–2454

    Article  Google Scholar 

  • Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. J Appl Mech 64:060802

    Article  Google Scholar 

  • Qu S, Huang Y, Jiang H, Liu C, Wu PD, Hwang KC (2004) Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int J Fract 129:199–220

  • Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ren XB, Zhang ZL, Nyhus B (2011) Effect of residual stress on cleavage fracture toughness by using cohesive zone model. Fatigue Fract Eng Mat Struct 34:592–603

    Article  Google Scholar 

  • Rice J (1967) Mechanics of crack tip deformation and extension by fatigue. In: Fatigue crack propagation, STP 415, pp 247–311. ASTM International

  • Riedel H, Rice JR (1980) Tensile cracks in creeping solids. In: Fracture mechanics, STP 700, pp 112–130. ASTM International

  • Roychowdhury S, Roy A, Dodds R (2002) Ductile tearing in thin aluminum panels: experiments and analyses using 3-D large displacement surface cohesive elements. Eng Fract Mech 69:983–1002

    Article  Google Scholar 

  • Rösler J, Harders H, Bäker M (2007) Mechanical behavior of engineering materials: metals, ceramics, polymers, and composites. Springer, Berlin

    Google Scholar 

  • Sevillano JG (2001) The effective threshold for fatigue crack propagation: a plastic size effect? Scripta Mater 44:2661–2665

    Article  Google Scholar 

  • Shrotriya P, Allameh SM, Lou J, Buchheit T, Soboyejo WO (2003) On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mech Mater 35:233–243

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Suo Z, Shih CF, Varias AG (1993) A theory for cleavage cracking in the presence of plastic flow. Acta Metall Mater 41:1551–1557

    Article  Google Scholar 

  • Turon A, Dávila CG, Pamanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1996) Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct 33:3297–3308

    Article  Google Scholar 

  • Tvergaard V, Hutchinson JW (1994) Effect of T-stress on mode I crack growth resistance in a ductile solid. Int J Solids Struct 31:823–833

  • Wang B, Siegmund T (2005) Numerical simulation of constraint effects in fatigue crack growth. Int J Fatigue 27:1328–1334

    Article  Google Scholar 

  • Wei Y, Qiu X, Hwang KC (2004) Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity. Eng Fract Mech 71:107–125

    Article  Google Scholar 

  • Wei Y, Hutchinson JW (1997) Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J Mech Phys Solids 45:1253–1273

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Xiao QZ, Karihaloo BL (2002) Coefficients of the crack tip asymptotic field for a standard compact tension specimen. Int J Fract 118:1–15

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy Nuclear Energy University Program under Award Number DE-NE0000722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Siegmund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seiler, P.E., Siegmund, T., Zhang, Y. et al. Stationary and propagating cracks in a strain gradient visco-plastic solid. Int J Fract 202, 111–125 (2016). https://doi.org/10.1007/s10704-016-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0148-0

Keywords

Navigation