Skip to main content
Log in

Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this study, the crack problem in linear viscoelastic material is investigated numerically. The time dependent two-dimensional (2D) viscoelastic crack problem is treated by the precise time-domain expanding algorithm (PTDEA), such that the original problem is transformed into a series of quasi-elastic crack problems. The relationships among these quasi-elastic problems are expressed in terms of the time-domain expanding coefficients of displacement and stress in an improved recursive manner. Then a symplectic analytical singular element (SASE) which has been demonstrated to be effective and efficient for 2D elastic fracture problem is applied to solve the quasi-elastic crack problems obtained above. The SASE is constructed by using the symplectic eigen solutions with higher order expanding terms. An improved convergence criterion employing both displacement and stress for PTDEA is proposed. Taking advantage of the SASE, the stress intensity factors, crack opening and sliding displacements (COD and CSD) and strain energy release rate of the studied problem can be solved directly without any post-processing. Numerical examples show that the results of the present method can be solved accurately and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Methods Eng 11:85–98

    Article  Google Scholar 

  • Benzley SE (1974) Representation of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545

    Article  Google Scholar 

  • Bismarck-Nasr MN, Fernandes JLC (2006) Hybrid singular elements in fracture mechanics. Proc Inst Mech Eng G J Aerosp Eng 220:29–49

    Article  Google Scholar 

  • Chen YC, Hwu C (2011) Boundary element analysis for viscoelastic solids containing interfaces/holes/cracks/inclusions. Eng Anal Bound Elem 35:1010–1018

    Article  Google Scholar 

  • China Aircraft Research Institute (1981) Handbook of stress intensity factor, 1st edn. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Duan JB, Lei YJ, Li DK (2011) Fracture analysis of linear viscoelastic materials using triangular enriched crack tip elements. Finite Elem Anal Des 47:1157–1168

    Article  Google Scholar 

  • Gao GY, Li Z, Xu J (2011) Optical method of caustics applied in viscoelastic fracture analysis. Opt Laser Eng 49:632–639

    Article  Google Scholar 

  • Hajikarimi P, Mohammadi S, Aflaki S (2012) Two dimensional creep analysis of a linear cracked viscoelastic medium using the extended finite element method. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Vienna

  • He YQ, Yang HT (2009) Identification of geometric boundary configurations in heat transfer problems via element-free galerkin and level-set methods. Numer Heat Transf B Fundam 55:313–323

    Article  Google Scholar 

  • He YQ, Yang HT (2017) Solving viscoelastic problems by combining SBFEM and a temporally piecewise adaptive algorithm. Mech Time-Depend Mater 21:481–497

    Article  CAS  Google Scholar 

  • He J, Liu QS, Wu Z (2017) Creep crack analysis of viscoelastic material by numerical manifold method. Eng Anal Bound Elem 80:72–86

    Article  Google Scholar 

  • Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9:495–507

    Article  Google Scholar 

  • Holston A (1976) A mixed mode crack tip finite element. Int J Fract 12:887–899

    Google Scholar 

  • Hu XF, Yao WA (2011) A novel singular finite element on mixed-mode bimaterial interfacial cracks with arbitrary crack surface tractions. Int J Fract 172:41–52

    Article  Google Scholar 

  • Hu XF, Bui TQ, Wang JN, Yao WA, Ton LHT, Singh IV, Tanaka S (2017a) A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading. Eur J Mech-A/Sol 65:79–90

    Article  Google Scholar 

  • Hu XF, Gao HY, Yao WA, Yang ST (2017b) Study on steady-state thermal conduction with singularities in multi-material composites. Int J Heat Mass Transf 104:861–870

    Article  CAS  Google Scholar 

  • Knauss WG (1967) An upper bound of failure in viscoelastic materials subjected to multiaxial stress states. Int J Fract Mech 3:267–277

    Article  CAS  Google Scholar 

  • Li XC (2011) Saint Venant solutions in symmetric deformation for rectangular transversely isotropic magnetoelectroelastic solids. Adv Mater Res 284–286:2243–2250

    Article  Google Scholar 

  • Lim CW, Cui S, Yao WA (2007) On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. Int J Solids Struct 44:5396–5411

    Article  Google Scholar 

  • Lim CW, Lv CF, Xiang Y, Yao WA (2009) On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int J Eng Sci 47:131–140

    Article  CAS  Google Scholar 

  • Liu JH, Wu CC, Huang RY (2004) Precise integration method of C-integral for linear viscoelastic solids with crack. J Shanghai Jiaotong Univ 38:25–31

    Google Scholar 

  • Lv CF, Lim CW, Yao WA (2010) A new analytic symplectic elasticity approach for beams resting on Pasternak elastic foundations. J Mech Mater Struct 4:1741–1754

    Article  Google Scholar 

  • Masuero JR, Creus GJ (1993) Finite elements analysis of viscoelastic fracture. Int J Fract 60:267–282

    Article  Google Scholar 

  • Mueller HK (1968) Stable crack propagation in a viscoelastic strip. California Institute of Technology, Pasadena

    Google Scholar 

  • Oliveira HL, Leonel ED (2017) A BEM formulation applied in the mechanical material modelling of viscoelastic cracked structures. Int J Adv Struct Eng 9:1–12

    Article  CAS  Google Scholar 

  • Qin QH (2012) Advanced mechanics of piezoelectricity. Higher Education Press, Beijing

    Google Scholar 

  • Ren Y, Yang HT (2010) Equivalent analysis of orthogonal viscoelastic jointed rock via an adaptive algorithm in time domain. Finite Elem Anal Des 46:875–888

    Article  Google Scholar 

  • Sakaue K, Uchiyama Y, Tanaka H, Yoneyama S, Takashi M (2008) Evaluation of crack tip stress and strain fields under nonproportional loading in a viscoelastic material. Eng Fract Mech 75:4140–4150

    Article  Google Scholar 

  • Syngellakis S, Wu J (2008) Evaluation of polymer fracture parameters by the boundary element method. Eng Fract Mech 75:1251–1265

    Article  Google Scholar 

  • Tong P, Pian THH, Lasry SJ (1973) A hybrid-element approach to crack problems in plane elasticity. Int J Numer Methods Eng 7:297–308

    Article  Google Scholar 

  • Walsh PF (1971) The computation of stress intensity factors by a special finite element technique. Int J Solids Struct 7:1333–1342

    Article  Google Scholar 

  • Wang JL, Birgisson B (2007) A time domain boundary element method for modeling the quasi-static viscoelastic behavior of asphalt pavements. Eng Anal Bound Elem 31:226–240

    Article  Google Scholar 

  • Wang CQ, Zheng CL (2004) Semi-analytical finite element method for fictitious crack model in fracture mechanics of concrete. Appl Math Mech 25:1265–1270

    Article  Google Scholar 

  • Wilson WK (1969) Combined mode fracture mechanics. University of Pittsburgh, Pittsburgh

    Google Scholar 

  • Xu XS, Leung AYT, Gu Q, Yang H, Zheng JJ (2008) 3D symplectic expansion for piezoelectric media. Int J Numer Methods Eng 74:1848–1871

    Article  Google Scholar 

  • Xu XS, Cheng XH, Zhou ZH, Xu CH (2015) An analytical approach for the mixed-mode crack in linear viscoelastic media. Eur J Mech-A/Sol 52:12–25

    Article  Google Scholar 

  • Yang HT (1999) A new approach of time stepping for solving transfer problems. Commun Numer Methods Eng 15:325–334

    Article  Google Scholar 

  • Yang HT, Guo XL (2000) Perturbation boundary-finite element combined method for solving the linear creep problem. Int J Solids Struct 37:2167–2183

    Article  Google Scholar 

  • Yang HT, Han Z (2004) Solving non-linear viscoelastic problems via a self-adaptive precise algorithm in time domain. Int J Solids Struct 41:5483–5498

    Article  Google Scholar 

  • Yang CH, Lin YY (2018) Time-dependent fracture of mode-I cracks in poroviscoelastic media. Eur J Mech-A/Sol 69:78–87

    Article  Google Scholar 

  • Yang HT, Gao Q, Guo XL, Wu RF (2001) A new algorithm of time stepping in dynamic viscoelastic problems. Appl Math Mech 22:650–657

    Article  Google Scholar 

  • Yang JH, Lei YJ, Han JL, Meng SY (2016) Enriched finite element method for three-dimensional viscoelastic interface crack problems. J Mech Sci Technol 30:771–782

    Article  Google Scholar 

  • Yao WA, Hu XF (2011) A novel singular finite element of mixed-mode crack problems with arbitrary crack tractions. Mech Res Commun 38:170–175

    Article  Google Scholar 

  • Yao WA, Li XC (2006) Symplectic duality system on plane magnetoelectroelastic solids. Appl Math Mech 2006:195–205

    Article  Google Scholar 

  • Yao WA, Wang S (2012) An analytical singular element for interface cracks in bi-material Kirchhoff plate bending. Eng Fract Mech 91:103–116

    Article  Google Scholar 

  • Yao WA, Zhong WX, Lim CW (2009) Symplectic elasticity. World Scientific, Singapore

    Book  Google Scholar 

  • Yao WA, Zhang P, Gao HY, Hu XF (2016) An analytical singular element for the study of cohesive zone model based crack propagation. Int J Fract 197:189–199

    Article  Google Scholar 

  • Yao WA, Cai ZY, Hu XF (2018) A new symplectic analytical singular element for crack problems under dynamic loading condition. Eng Fract Mech 188:431–447

    Article  Google Scholar 

  • Yoneyama S, Takashi M (2002) Elliptically polarized white light photoviscoelastic technique and its application to viscoelastic fracture. Opt Laser Eng 38:17–30

    Article  Google Scholar 

  • Yu TT, Ren QW (2011) Modeling crack in viscoelastic media using the extended finite element method. Sci China Technol Sci 54:1599–1606

    Article  Google Scholar 

  • Yu B, Yao WA, Gao XW, Gao Q (2014) A combined approach of RIBEM and precise time integration algorithm for solving transient heat conduction problems. Numer Heat Transf B Fundam 65:155–173

    Article  Google Scholar 

  • Zhang CY (2006) Viscoelastic fracture mechanics. Science Press, Beijing (English version)

    Google Scholar 

  • Zhang HH, Rong G, Li LX (2010) Numerical study on deformations in a cracked viscoelastic body with the extended finite element method. Eng Anal Bound Elem 34:619–624

    Article  CAS  Google Scholar 

  • Zhong WX (1995) A new systematic methodology for theory of elasticity. Dalian University of Technology Press, Dalian (in Chinese)

    Google Scholar 

  • Zhong WX (2004) On precise integration method. J Comput Appl Math 163:59–78

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11372065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weian Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Calculation process of SERRs

Appendix A: Calculation process of SERRs

While the export nodal quasi-elastic displacements vector \(\varvec{{\tilde{d}}}_m^{\mathrm{N}} \) is solved out, the coefficients \({\tilde{a}}_{n,\left( {m,k} \right) } \left( {n\ge 1;m\ge K;k\ge 0} \right) \) can be obtained by Eq. (55) or (45). And then according to the relationship of \(\varvec{u}_{m,k} \) and \(\varvec{{\tilde{u}}}_{m,k} \) in the third section, \(a_{n,\left( {m,k} \right) } \left( {n\ge 1;m\ge 0;k\ge 0} \right) \) in Eq. (52) can be acquired by the following recursive formulations:

  1. (1)

    When \(k=0\), for \(0\le m<K\,\left( {\hbox {if }K>0} \right) \) via Eq. (16) gives

    $$\begin{aligned} a_{n,\left( {m,0} \right) } =0, \end{aligned}$$
    (A.1)

    and for \(K\le m<I\) via Eqs. (22) and (19) gives

    $$\begin{aligned} a_{n,\left( {m,0} \right) } =\left[ {{\tilde{a}}_{n,\left( {m,0} \right) } -e_{n,\left( {m,0} \right) } } \right] /b_{m,0} , \end{aligned}$$
    (A.2)

    where

    $$\begin{aligned} \left\{ {{\begin{array}{ll} {e_{n,\left( {K,0} \right) } =0,} &{} \\ {\begin{array}{l} e_{n,\left( {m,0} \right) } =\sum \limits _{i=I-m}^{I-1} {\left[ {T_0^{J-i} \frac{q_i }{q_I }\frac{(m-I+i)!}{(m-K)!}a_{n,\left( {m-I+i,0} \right) } } \right] } \\ -\sum \limits _{j=I-m}^{J-1} {\left[ {T_0^{J-j} \frac{p_j }{p_J }\frac{(m-I+j)!}{(m-K)!}\left( {b_{m-J+j,0} a_{n,\left( {m-J+j,0} \right) } +e_{n,\left( {m-J+j,0} \right) } } \right) } \right] ,} \\ \end{array}} &{} {\left( {K<m<I} \right) .} \\ \end{array} }} \right. \end{aligned}$$
    (A.3)
  2. (2)

    When \(k>0\), for \(0\le m<I\) via Eq. (24) gives

    $$\begin{aligned}&a_{n,\left( {m,k} \right) } =\left( {T_k /T_{k-1} } \right) ^{m}\nonumber \\&\quad \times \sum _{j=m}^{M_{k-1} } {\left[ {j!/m!/(j-m)!} \right] a_{n,\left( {j,k-1} \right) }}, \end{aligned}$$
    (A.4)

    and for \(K\le m<I\) via Eq. (28) gives

    $$\begin{aligned}&e_{n,\left( {m,k} \right) } =\left( {T_k /T_{k-1} } \right) ^{m-K}\sum _{j=m}^{M_{k-1} }\nonumber \\&\quad {\left[ {\left( {j-K} \right) !/\left( {m-K} \right) !/(j-m)!} \right] e_{n,\left( {j,k-1} \right) }}.\nonumber \\ \end{aligned}$$
    (A.5)
  3. (3)

    When \(k\ge 0\), for \(m\ge I\) via Eqs. (31) and (30) gives

    $$\begin{aligned} a_{n,\left( {m,k} \right) } =\left[ {{\tilde{a}}_{n,\left( {m,k} \right) } -e_{n,\left( {m,k} \right) } } \right] /b_{m,k}, \end{aligned}$$
    (A.6)

    where

    $$\begin{aligned}&e_{n,\left( {m,k} \right) } =\sum _{i=0}^{I-1} {\left[ {T^{J-i}\frac{q_i }{q_I }\frac{(m-I+i)!}{(m-K)!}a_{n,\left( {m-I+i,k} \right) } } \right] } \nonumber \\&\quad -\sum _{j=0}^{J-1} \left[ T^{J-j}\frac{p_j }{p_J }\frac{(m-I+j)!}{(m-K)!}\right. \nonumber \\&\qquad \left. \left( b_{m-J+j,k}a_{n,\left( {m-J+j,k} \right) } +e_{n,\left( {m-J+j,k} \right) } \right) \right] .\nonumber \\ \end{aligned}$$
    (A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Li, X. & Hu, X. Viscoelastic crack analysis using symplectic analytical singular element combining with precise time-domain algorithm. Int J Fract 214, 29–48 (2018). https://doi.org/10.1007/s10704-018-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0316-5

Keywords

Navigation