Skip to main content
Log in

Molecular characterization and expression changes of cytoglobin genes in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Schizopygopsis pylzovi, an endemic fish of the subfamily Schizothoracinae, is comparatively well adapted to dissolved oxygen fluctuations in the aqueous environments of the Qinghai-Tibetan Plateau. Here, we cloned the complete cDNA of cytoglobin 1 and 2 (Cygb1 and Cygb2) from S. pylzovi and then investigated transcriptional changes of both genes in the selected tissues in response to hypoxia. Both the two genes had the standard exon-intron structure of vertebrate Mb genes but lacked an exon at downstream of the H helix (HC11.2) as seen in mammals. We applied severe hypoxia (4 h at PO2 = 3.6% saturation) and moderate hypoxia (72 h at PO2 = 36.0% saturation) to adult S. pylzovi. Under severe hypoxia, the Cygb1 mRNA levels decreased significantly in the liver, kidney, and brain, but increased significantly in the heart, while the Cygb2 mRNA levels downregulated significantly in the muscle and liver. But, the transcriptional activity of Cygb1 in muscle and that of Cygb2 in the kidney, brain, and heart remained almost unchanged. Under moderate hypoxia, the transcriptional activities of both genes in muscle and brain were turned down quickly after onset hypoxia, while in the liver, kidney, and heart, the transcriptional activities of both genes showed a short-term upregulation in different time periods of hypoxia exposure. Our data suggest that both the Cygb1 and Cygb2 in S. pylzovi are hypoxia-induced genes, and the responses of the transcription regulation of Cygb1 and Cygb2 genes to hypoxia are tissue specific and also depend on the hypoxia regime, which are different from that of other fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 107:21570–21575

    Article  PubMed  PubMed Central  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, Fuchs C, Hankeln T (2004) Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56:703–707

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Gerlach F, Hankeln T (2007) Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv Exp Med Biol 618:169–180

    Article  PubMed  Google Scholar 

  • Corti P, Ieraci M, Tejero J (2016) Characterization of zebrafish neuroglobin and cytoglobins 1 and 2: zebrafish cytoglobins provide insights into the transition from six-coordinate to five-coordinate globins. Nitric Oxide 53:22–34

    Article  CAS  PubMed  Google Scholar 

  • Fordel E, Geuens E, Dewilde S, De Coen W, Moens L (2004a) Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life 56:681–687

    Article  CAS  PubMed  Google Scholar 

  • Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J, Moens L (2004b) Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun 319:342–348

    Article  CAS  PubMed  Google Scholar 

  • Fraser J, Vieira de Mello L, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci U S A 103:2977–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs C, Luckhardt A, Gerlach F, Burmester T, Hankeln T (2005) Duplicated cytoglobin genes in teleost fishes. Biochem Biophys Res Commun 337:216–223

    Article  CAS  PubMed  Google Scholar 

  • Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278:51713–51721

    Article  CAS  PubMed  Google Scholar 

  • Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, Sanctis DD, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99:110–119

    Article  CAS  PubMed  Google Scholar 

  • Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci U S A 93:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold S, Fago A, Weber RE, Dewilde S, Moens L (2004) Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J Biol Chem 279:22841–22847

    Article  CAS  PubMed  Google Scholar 

  • Lechauve C, Chauvierre C, Dewilde S, Moens L, Green BN, Marden MC, Celier C, Kiger L (2010) Cytoglobin conformations and disulfide bond formation. FEBS J 277:2696–2704

    Article  CAS  PubMed  Google Scholar 

  • Li D, Chen XQ, Li WJ, Yang YH, Wang JZ, Yu AC (2007) Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res 32:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Oleksiewicz U, Liloglou T, Field JK, Xinarianos G (2011) Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci 68:3869–3883

    Article  CAS  PubMed  Google Scholar 

  • Qi D, Chao Y, Guo S, Zhao L, Li T, Wei F, Zhao X (2012) Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai-Tibetan plateau. PLoS One 7:e34070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi D, Xia M, Chao Y, Zhao Y, Wu R (2017) Identification, molecular evolution of toll-like receptors in a Tibetan schizothoracine fish (Gymnocypris eckloni) and their expression profiles in response to acute hypoxia. Fish Shellfish Immunol 68:102–113

    Article  CAS  PubMed  Google Scholar 

  • Qi D, Chao Y, Zhao Y, Xia M, Wu R (2018) Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. Fish Physiol Biochem 44:557–571

    Article  CAS  PubMed  Google Scholar 

  • Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275:3633–3643

    Article  CAS  PubMed  Google Scholar 

  • Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63:826–841

    Article  CAS  PubMed  Google Scholar 

  • Sawai H, Kawada N, Yoshizato K, Nakajima H, Aono S, Shiro Y (2003) Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry 42:5133–5142

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevo E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T (2004) Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 279:8063–8069

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) Structural basis of human cytoglobin for ligand binding. J Mol Biol 339:873–885

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong C, Lin Y, Zhang C, Shi J, Qi H, Zhao K (2015) Transcriptome-wide identification, molecular evolution and expression analysis of toll-like receptor family in a Tibet fish, Gymnocypris przewalskii. Fish Shellfish Immunol 46:334–345

    Article  CAS  PubMed  Google Scholar 

  • Trent JT 3rd, Hargrove MS (2002) A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem 277:19538–19545

    Article  CAS  PubMed  Google Scholar 

  • Wajcman H, Kiger L, Marden MC (2009) Structure and function evolution in the superfamily of globins. C R Biol 332:273–282

    Article  CAS  PubMed  Google Scholar 

  • Wawrowski A, Gerlach F, Hankeln T, Burmester T (2011) Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181:199–208

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Wu YF, Wu CZ (1992) The fishes of the Qinghai – Xizang plateau. Science and Technology Press, Chengdu

    Google Scholar 

  • Xia M, Chao Y, Jia JL, Li CZ, Kong QH, Zhao YL, Guo SC, Qi DL (2016) Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. J Comp Physiol B 186:1033–1043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors take the opportunity to give special thanks to Dr. Ian Mather for editing the manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 31460094) and the Natural Science Foundation of Qinghai Science & Technology Department in China (No. 2015-ZJ-901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Qi.

Electronic supplementary material

Fig. S1

Expressions of β-actin and GAPDH mRNA in different tissues of S. pylzovi under normoxia and severe hypoxia. A, β-actin expression under normoxia; B, β-actin expression under severe hypoxia; C, GAPDH expression under normoxia; D, GAPDH expression under severe hypoxia. (PNG 509 kb)

High Resolution Image (TIFF 10898 kb)

Fig. S2

The full length Cygb1 cDNA of S. pylzovi and the deduced amino acid sequence. The start codon ATG and termination codon TGA are underlined. Globin domain is in green shadow. (PNG 772 kb)

High Resolution Image (TIFF 1786 kb)

Fig. S3

The full length Cygb2 cDNA of S. pylzovi and the deduced amino acid sequence. The start codon ATG and termination codon TGA are underlined. Globin domain is in green shadow. (PNG 738 kb)

High Resolution Image (TIFF 1771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Y., Xia, M., Wu, R. et al. Molecular characterization and expression changes of cytoglobin genes in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. Fish Physiol Biochem 45, 863–872 (2019). https://doi.org/10.1007/s10695-018-0582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0582-1

Keywords

Navigation