Skip to main content
Log in

Detection of reproducible QTL associated with bioenergy traits in sorghum across several growing environments

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sweet sorghum (Sorghum bicolor L. Moench) is a promising bioenergy crop. To increase the productivity of this crop, marker-assisted breeding will be important to advance its genetic improvement. This study aimed to identify quantitative trait loci (QTL) associated with several bioenergy-related traits in sweet sorghum that include flowering time, plant height, total biomass, stem diameter, stem moisture percentage, and brix. We used 188 F7 recombinant inbred lines (RILs) derived from a cross between a sweet sorghum (Wray) and a grain sorghum (Macia). The RILs and their parental lines were grown at two locations. Application of genotyping-by-sequencing analysis of the RILs allowed for constructing a map with 979 single nucleotide polymorphisms. Using the inclusive composite interval mapping of additive QTL, a major QTL for a flowering time was detected on chromosome 6, and explained 29.45% of the phenotypic variances (PVE). Major QTL for plant height (29.51% PVE) and total biomass yield (16.46% PVE) were detected on chromosome 7, and QTL for stem diameter (9.43% PVE) was detected on chromosome 1. Several QTL for brix were associated with sugar transporter genes, providing candidate genes for further study. For example, a major QTL for brix (39.92% PVE) was detected on chromosome 3 consistently across four environments. Twenty one QTL for five traits were detected across four environments using ICIM-ADD. The identified QTL in this study should aid in developing lines and hybrids of sorghum that are suitable for producing bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Additional datasets generated by this study are included in the Supplementary Materials.

References

  • Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breed 21:497–509

    Article  CAS  Google Scholar 

  • Beissinger TM et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bihmidine S, Baker RF, Hoffner C, Braun DM (2015) Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression. BMC Plant Biol 15:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Bihmidine S, Julius B, Dweikat I, Braun DM (2016) Tonoplast sugar transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signal Behav 11(1):e1117721. https://doi.org/10.1080/15592324.2015.1117721

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Worland A, Plaschke J, Schumann E, Law C (1993) Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Braun D (2012) SWEET! The pathway is complete. Science 335(6065):173–174. https://doi.org/10.1126/science.1216828

    Article  CAS  PubMed  Google Scholar 

  • Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol 149:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadhead D, Freeman K, Zummo N (1978) ’Wray’-a new variety of sweet sorghum for sugar production [Yields]. Res Rep Miss Agric For Exp Stn USA 4(1):255

    Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl, vol 46. Springer

    Book  Google Scholar 

  • Calviño M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23:323–329. https://doi.org/10.1016/j.copbio.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420. https://doi.org/10.1016/j.tplants.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9:243–254

    Article  CAS  PubMed  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt M-M, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 42:1357–1378

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom J-S et al (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  • Felderhoff TJ et al (2012) QTL for energy-related traits in a sweet × grain sorghum [Sorghum bicolor (L.) Moench] mapping population. Crop Sci 52:2040–2049

    Article  Google Scholar 

  • Gelli M et al (2016) Mapping QTL and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16:1

    Article  Google Scholar 

  • Guan Y et al (2011) QTL mapping of bio-energy related traits in sorghum. Euphytica 182:431–440

    Article  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725

    Article  CAS  Google Scholar 

  • Habyarimana E, Bonardi P, Laureti D, Di Bari V, Cosentino S, Lorenzoni C (2004) Multilocational evaluation of biomass sorghum hybrids under two stand densities and variable water supply in Italy. Industr Crops Prod 20:3–9. https://doi.org/10.1016/j.indcrop.2003.12.020

    Article  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Article  CAS  PubMed  Google Scholar 

  • Higgins RH, Thurber CS, Assaranurak I, Brown PJ (2014) Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families G3: genes. Genomes Genet 4:1593–1602. https://doi.org/10.1534/g3.114.013318

    Article  CAS  Google Scholar 

  • Hills F, Lewellen R, Skoyen I (1990) Sweet sorghum cultivars for alcohol production. Calif Agric 44:14–16

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457. https://doi.org/10.2135/cropsci2010.06.0326

    Article  Google Scholar 

  • Kalpande HV, Chavan SK, More AW, Patil VS, Unche PB (2014) Character association, genetic variability and component analysis in sweet sorghum [Sorghum bicolor (L. Moench)]. J Crop Weed 10:108–110

    Google Scholar 

  • Kawahigashi H, Kasuga S, Okuizumi H, Hiradate S, Yonemaru J-I (2013) Evaluation of brix and sugar content in stem juice from sorghum varieties. Grassl Sci 59:11–19. https://doi.org/10.1111/grs.12006

    Article  CAS  Google Scholar 

  • Kearsey M, Farquhar A (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Khairallah M et al (1998) Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed 117:309–318

    Article  Google Scholar 

  • Kong W et al (2018) Genotyping by Sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines improves sensitivity and resolution of QTL Detection. G3 Genes Genomes Genet 8:2563–2572. https://doi.org/10.1534/g3.118.200173

    Article  CAS  Google Scholar 

  • Lekgari AL (2010) Genetic mapping of quantitative trait loci associated with bioenergy traits, and the assessment of genetic variability in sweet sorghum (Sorghum bicolor (L.). Moench). Ph.D. thesis, University of Nebraska, Lincoln

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTL affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littell RC, Stroup WW, Milliken GA, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS institute, Arlington

    Google Scholar 

  • Liu YL, Wang LH, Li JQ, Zhan QW, Zhang Q, Li JF, Fan FF (2015) QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense. Genet Mol Res 14:3854–3861. https://doi.org/10.4238/2015.April.22.14

    Article  CAS  PubMed  Google Scholar 

  • Lv P et al (2013) Association analysis of sugar yield-related traits in sorghum Sorghum bicolor (L.). Euphytica 193:419–431. https://doi.org/10.1007/s10681-013-0962-7

    Article  CAS  Google Scholar 

  • Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D (2019) The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132(3):751–766. https://doi.org/10.1007/s00122-018-3212-5. (Epub 2018 Oct 20 PMID: 30343386)

    Article  PubMed  Google Scholar 

  • Madhusudhana R, Patil JV (2013) A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 191:259–268

    Article  Google Scholar 

  • Madhusudhana R (2014) Genetic mapping in sorghum genetics, genomics and breeding of Sorghum. P. 141

  • Makanda I, Tongoona P, Derera J (2009) Combining ability and heterosis of sorghum germplasm for stem sugar traits under off-season conditions in tropical lowland environments. Field Crop Res 114:272–279. https://doi.org/10.1016/j.fcr.2009.08.009

    Article  Google Scholar 

  • Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinley BA, Casto AL, Rooney WL, Mullet JE (2018) Developmental dynamics of stem starch accumulation in Sorghum bicolor. Plant Direct 2:1–15. https://doi.org/10.1002/pld3.74

    Article  CAS  Google Scholar 

  • Milne RJ, Byrt CS, Patrick JW, Grof CPL (2013) Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Front Plant Sci 4:223. https://doi.org/10.3389/fpls.2013.00223

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458. https://doi.org/10.1073/pnas.1215985110

    Article  PubMed  Google Scholar 

  • Mullet JE, Rooney WL (2013) Method for production of sorghum hybrids with selected flowering times. Google Patents, Washington DC

    Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84. https://doi.org/10.1126/science.1086072

    Article  CAS  PubMed  Google Scholar 

  • Murphy RL et al (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci 108:16469–16474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy R, Morishige D, Brady J, Rooney W, Yang S, Klein P, Mullet J (2014) Ghd7 (Ma6) represses flowering in long days: a key trait in energy sorghum hybrids. Plant Genome 7(2):23

    Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193. https://doi.org/10.2135/cropsci2008.01.0068

    Article  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179. https://doi.org/10.2135/cropsci2008.01.0016

    Article  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62. https://doi.org/10.3835/plantgenome2008.10.0011

    Article  CAS  Google Scholar 

  • Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. https://doi.org/10.1038/nature07723

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JF, Sattler SE, Anderson WF (2013) Evaluation of public sweet sorghum A-lines for use in hybrid production. Bioenerg Res 6:91–102

    Article  Google Scholar 

  • Perrier L, Rouan L, Jaffuel S, Clément-Vidal A, Roques S, Soutiras A, Baptiste C, Bastianelli D, Fabre D, Dubois C, Pot D, Luquet D (2017) Plasticity of Sorghum stem biomass accumulation in response to water deficit: a multiscale analysis from internode tissue to plant level. Front Plant Sci 1(8):1516. https://doi.org/10.3389/fpls.2017.01516.PMID:28919904;PMCID:PMC5585773

    Article  Google Scholar 

  • Qazi HA, Paranjpe S, Bhargava S (2012) Stem sugar accumulation in sweet sorghum–activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol 169:605–613

    Article  CAS  PubMed  Google Scholar 

  • Quinby JR (1966) Fourth maturity gene locus in sorghum. Crop Sci 6:516–518

    Article  Google Scholar 

  • Quinby JR (1974) Sorghum improvement and the genetics of growth. Texas A&M University Press, College Station

    Google Scholar 

  • Regassa T, Wortmann C (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenerg 64:348–355. https://doi.org/10.1016/j.biombioe.2014.03.052

    Article  CAS  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, Lynne McIntyre C (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock Biofuels. Bioprod Biorefining 1:147–157

    Article  CAS  Google Scholar 

  • Saadan H, Mgonja M, Obilana A (2000) Performance of the sorghum variety Macia in multiple environments in Tanzania. Int Sorghum Millets Newsl 41:10–12

    Google Scholar 

  • Schittenhelm S, Schroetter S (2014) Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids. J Agron Crop Sci 200:46–53

    Article  CAS  Google Scholar 

  • Setimela P, Manthe C, Mazhani L, Obilana A (1997) Release of three grain sorghum pure line varieties in Botswana South African. J Plant Soil 14:137–138

    Google Scholar 

  • Shehzad T, Okuno K (2014) Diversity assessment of sorghum germplasm and its utilization in genetic analysis of quantitative traits—A review Australian. J Crop Sci 8:937–944

    Google Scholar 

  • Shehzad T, Okuno K (2015) QTL mapping for yield and yield-contributing traits in sorghum (Sorghum bicolor (L.) Moench) with genome-based SSR markers. Euphytica 203:17–31. https://doi.org/10.1007/s10681-014-1243-9

    Article  CAS  Google Scholar 

  • Shiringani AL, Friedt W (2011) QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011

    Article  PubMed  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTL for sugar-related traits in a RIL population of Sorghum bicolor L Moench. Theor Appl Genet 121:323–336

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma S, Singh S (2012) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55:471–479. https://doi.org/10.1139/g2012-034

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015) High-density linkage map construction and mapping of seed trait QTL in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci Rep 5:17512 doi:https://doi.org/10.1038/srep17512https://www.nature.com/articles/srep17512#supplementary-information

  • Wang J, Li H, Zhang L, Meng L (2019) QTL IciMapping version 42 the quantitative genetics group institute of crop science (Beijing). Chin Acad Agric Sci CAAS 22:100081

    Google Scholar 

  • White GM, Hamblin MT, Kresovich S (2004) Molecular evolution of the phytochrome gene family in sorghum: changing rates of synonymous and replacement evolution. Mol Biol Evol 21:716–723

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Chen J (2012) A high throughput DNA extraction method with high yield and quality. Plant Methods 8:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M et al (2016) Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep 6:28366. https://doi.org/10.1038/srep28366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W-H et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Murphy RL, Morishige DT, Klein PE, Rooney WL, Mullet JE (2014) Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. Plos One 9:0105352. https://doi.org/10.1371/journal.pone.0105352

    Article  CAS  Google Scholar 

  • Yl B, Yazaki S, Inoue M, Hw C (2006) QTL for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China 5:736–744

    Article  Google Scholar 

  • Zegada-Lizarazu W, Monti A (2013) Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages. Physiol Plant 149(1):56–66. https://doi.org/10.1111/ppl.12016. (Epub 2012 Dec 28 PMID: 23198740)

    Article  CAS  PubMed  Google Scholar 

  • Zegada-Lizarazu W, Zatta A, Monti A (2012) Water uptake efficiency and above and belowground biomass development of sweet sorghum and maize under different water regimes. Plant Soil 351:47–60. https://doi.org/10.1007/s11104-011-0928-2

    Article  CAS  Google Scholar 

  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res 111:55–64

    Article  Google Scholar 

Download references

Funding

This work is being funded by a grant from the Plant Feedstock Genomics for Bioenergy # DE-SC0006810 to DMB et al. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.T. conducted the experiments and drafted the manuscript. I.D. designed and oversee the experiment executions. D.B. and B.B. contributed ideas to the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. Dweikat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

The authors consented for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dweikat, I., Braun, D., Benjamin, B. et al. Detection of reproducible QTL associated with bioenergy traits in sorghum across several growing environments. Euphytica 219, 70 (2023). https://doi.org/10.1007/s10681-023-03194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03194-1

Keywords

Navigation