Skip to main content
Log in

Molecular mapping of candidate gene regulating fruit stripe trait in watermelon

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fruit rind appearance traits significantly affect the commercial market value. The molecular basis and underlying gene(s) affecting rind strip pattern are still being investigated around the world. In this study, two contrasted inbred watermelon lines (non-striped “K2” and striped “L1”) were crossed to derive three F2 mapping populations in different environments over two years, and fine genetic mapping of a candidate gene affecting fruit stripe pattern was performed. Genetic segregation analysis and marker genotyping within three mapping populations (120-F2A, 230-F2B, and 155-F2C) collectively identified the major-effect genetic region on Chr-6 which exhibited that the striped-rind pattern is mainly regulated by the dominant gene locus (ClSP) over the non-stripped rind pattern. Fine genetic mapping with a large mapping population of 1100-F2 individuals and screened recombinant lines revealed six functionally annotated genes in a 62.5-kb interval. A genome-wide association study (GWAS) of a widely collected panel of 144 watermelon accessions with extreme fruit stripe variation analysis similarly confirmed the candidate genetic region on Chr-6, regulating the watermelon rind strip pattern. The pair-wise sequences alignment further proved that Cla97C06G126560 is the significant gene encoding the polygalacturonase-1 non-catalytic subunit beta (ClGP1). The phylogenetic associations of the watermelon ClSP gene with homologous protein sequences of 16 different plant species revealed the highest percentage of identical sequences with melon, cucumber, and pumpkin, and depicted highly conserved domains of the BURP superfamily. Real-time quantitative PCR (RT-qPCR) significantly validated the differentiated gene expression profiling in both lines “K2” and “L1”, respectively. In addition, the sequence analysis exhibited two SNPs, “SNP28280025 (A-C)” and “SNP28281451 (G-C)” in the Cla97C06G126560 gene, that were found to be correlated in 49 striped-type watermelon accessions of GWAS material. We expect that our novel research outcomes will be valuable for understanding the detailed genetic mechanism of the ClSP gene and for further genetic improvement of watermelon varieties with the desired fruit rind appearance trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amanullah S, Saroj A, Osae BA, Liu S, Liu H, Gao P, Luan F (2020) Detection of putative QTL regions associated with ovary traits in melon using SNP-CAPS markers. Sci Hortic 270:109445

    Article  CAS  Google Scholar 

  • Amanullah S, Gao P, Osae BA, Saroj A, Yang T, Liu S, Weng Y, Luan F (2021) Genetic linkage mapping and QTLs identification for morphology and fruit quality related traits of melon by SNP based CAPS markers. Sci Hortic 278:109849

    Article  CAS  Google Scholar 

  • Amanullah S, Osae BA, Yang T, Li S, Abbas F, Liu S, Liu S, Song Z, Wang X, Gao P, Luan F (2022) Development of whole genome SNP-CAPS markers and preliminary QTL mapping of fruit pedicel traits in watermelon. Front Plant Sci 13:879919. https://doi.org/10.3389/fpls.2022.879919

    Article  Google Scholar 

  • Asif MH, Nath P (2005) Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol Biochem 43:177–184

    Article  CAS  Google Scholar 

  • Atkinson RG, Schröder R, Hallett IC, Cohen D, MacRae EA (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129(1):122–133

    Article  CAS  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • Gama RN, Santos CA, Dias RC, Alves JC, Nogueira TO (2015) Microsatellite markers linked to the locus of the watermelon fruit stripe pattern. Genet Mol Res 14:269–276

    Article  CAS  Google Scholar 

  • Gao ML, Hu LL, Li YH, Weng YQ (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1961–1973

    Article  CAS  Google Scholar 

  • Gao ML, Liang XX, Liu XJ, Guo Y, Liu XS, Liu JX., Gao Y (2020) Genes for rind stripe variation in major cucurbits. Mol Plant Breed 1–12 (In Chinese with English Abstract)

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2011) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109(29):11872–11877

    Article  Google Scholar 

  • Grumet R, McCreight JD, McGregor C, Weng Y, Mazourek M, Reitsma K, Labate J, Davis A, Fei Z (2021) Genetic resources and vulnerabilities of major cucurbit crops. Genes 12:1222

    Article  CAS  Google Scholar 

  • Guo S, Zhang J, Sun H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  Google Scholar 

  • Guo S, Zhao S, Sun H et al (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51(1646):1623

    Google Scholar 

  • Guo Y, Gao M, Liang X, Xu M, Liu X, Zhang Y, Liu X, Liu J, Gao Y, Qu S, Luan F (2020) Quantitative trait loci for seed size variation in cucurbits - A review. Front Plant Sci 11:304

    Article  Google Scholar 

  • Gusmini G, Wehner TC (2006) Qualitative inheritance of rind pattern and flesh color in watermelon. J Hered 97:177–185

    Article  CAS  Google Scholar 

  • Hadfield KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343

    Article  CAS  Google Scholar 

  • Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, Altmann T, Sreenivasulu N, Bäumlein H, Kuhlmann M (2014) AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS ONE 9(10):e110065

    Article  Google Scholar 

  • Hattori J, Boutilier K, Campagne M, Miki B (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259(4):424–428

    Article  CAS  Google Scholar 

  • Herman R, Zvirin Z, Kovalski I, Freeman S, Denisov Y, Zuri G, Katzir N, Perl-Treves R (2008) Characterization of Fusarium race 1.2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus. Cucurbitaceae 2008, In: Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon (France), pp. 149–156

  • Kim H, Han D, Kang J, Choi Y, Levi A, Lee GP, Park Y (2015) Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon (Citrullus lanatus L.). Hort Environ Biotech 56:341–349

    Article  CAS  Google Scholar 

  • Korn RW (2007) Watermelon stripes. A case for the clonal mosaic model in plants. J Theor Biol 247(4):859–861

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  • Li D, Cuevas HE, Yang L, Li Y, Garcia-Mas J, Zalapa J, Staub JE, Luan F, Reddy U, He X, Gong Z (2011) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genom 12(1):396

    Article  CAS  Google Scholar 

  • Liang X, Gao M, Amanullah S, Guo Y, Liu X, Xu H, Liu J, Gao Y, Yuan C, Luan F (2022) Identification of QTLs linked with watermelon fruit and seed traits using GBS-based high-resolution genetic mapping. Sci Hortic 303:111237. https://doi.org/10.1016/j.scienta.2022.111237

    Article  CAS  Google Scholar 

  • Liu WG (2004) Gene list for melon (Cucumis melo) (2002). Zhongguo Tiangua (china Cucurbits and Vegetables) 04:46–47

    Google Scholar 

  • Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X (2019) Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215:20

    Article  Google Scholar 

  • Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F (2020) Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J. https://doi.org/10.1111/pbi.13434

    Article  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37

    Article  CAS  Google Scholar 

  • Lou L, Wehner TC (2016) Qualitative inheritance of external fruit traits in watermelon. Hort Sci 51:487–496

    CAS  Google Scholar 

  • Lv J, Fu Q, Lai Y, Zhou M, Wang H (2018) Inheritance and gene mapping of spotted to non-spotted trait gene CmSp-1 in melon (Cucumis melo L. var. chinensis Pangalo). Mol Breed 38:105

    Article  Google Scholar 

  • McCollum TG, Huber DJ, Cantliffe DJ (1989) Modification of polyuronides and hemicelluloses during muskmelon fruit softening. Physiol Plant 76(3):303–308

    Article  CAS  Google Scholar 

  • Miao H, Gu X, Zhang S, Zhang Z, Huang S, Wang Y, Cheng Z, Zhang R, Mu S, Li M, Zhang Z, Fang Z (2011) Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin 44(24):5031–5040

    Google Scholar 

  • Pan YP, Wang YH, McGregor C, Liu S, Luan FS, Gao ML, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    Article  CAS  Google Scholar 

  • Paris HS (2009) Genes for “reverse” fruit striping in squash (Cucurbita pepo). J Hered 100:371–379

    Article  CAS  Google Scholar 

  • Park SW, Kim KT, Kang SC, Yang HB (2016) Rapid and practical molecular marker development for rind traits in watermelon. Hort Environ Biotech 57:385–391

    Article  CAS  Google Scholar 

  • Périn C, Dogimont C, Giovinazzo N, Besombes D, Guitton L, Hagen L, Pitrat M (1999) Genetic control and linkages of some fruit characters in melon. Cucurb Genet Coop Rep 22:16–18

    Google Scholar 

  • Pitrat M (2006) Gene list for melon. Cucurbit Gen Cooper Report 28–29:142–163

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sergeant K, Printz B, Guerriero G, Renaut J, Lutts S, Hausman J (2019) The dynamics of the cell wall proteome of developing alfalfa stems. Biology 8(3):60

    Article  CAS  Google Scholar 

  • Shao Y, Wei G, Wang L, Dong Q, Zhao Y, Chen B, Xiang Y (2011) Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa. J Integr Plant Biol 53:743–755

    CAS  Google Scholar 

  • Smith CJ, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schuch W, Harding S et al (1990) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol 14:369–379

    Article  CAS  Google Scholar 

  • Song M, Zhang M, Cheng F, Wei Q, Wang J, Davoudi M, Chen J, Lou Q (2019) An irregularly striped rind mutant reveals new insight into the function of PG1beta in cucumber (Cucumis sativus L.). Theor Appl Genet 133:371–382

    Article  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):e5

    Article  Google Scholar 

  • Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T, Manteuffel R, Baumlein H (2009) The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol Biol 71:319–329

    Article  CAS  Google Scholar 

  • Wang H, Zhou L, Fu Y, Cheung MY, Wong FL, Phang TH, Sun Z, Lam HM (2012) Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant Cell Environ 35(11):1932–1947

    Article  CAS  Google Scholar 

  • Wang M, Gu X, Miao H, Liu S, Wang Y, Todd C, Zhang S (2014) Molecular mapping and candidate gene analysis for heavy netting gene (H) of mature fruit of cucumber (Cucumis sativus L.). Sci Agric Sin 47(08):1550–1557

    CAS  Google Scholar 

  • Wang D, Zhang M, Xu N, Yang S, Dou J, Liu D, Zhu L, Zhu H, Hu J, Ma C, Yang L, Sun S (2022) Fine mapping a ClGS gene controlling dark-green stripe rind in watermelon. Sci Hortic 291:110583

    Article  CAS  Google Scholar 

  • Weetman LM (1937) Inheritance and correlation of shape, size and color in the watermelon, Citrullus vulgaris Schrad. Iowa Agriculture Home Econ Exper Station Res Bull 20:1

    Google Scholar 

  • Wu S, Wang X, Reddy U et al (2019) Genome of “Charleston Gray”, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnol J 17:2246–2258

    Article  CAS  Google Scholar 

  • Xu H, Li Y, Yan Y, Wang K, Gao Y, Hu Y (2010) Genome scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 10:197

    Article  Google Scholar 

  • Yang G, Fan R, Yang X, Hou J, Yuan S, Cao M, Wang X, Li J (2014) Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo. Aca Hotic Sin 41(05):898–906

    CAS  Google Scholar 

  • Yang HB, Park S, Park Y, Lee GP, Kang SC, Kim YK (2015) Linkage analysis of the three loci determining rind color and stripe pattern in watermelon. Korean J Hort Sci Tech 33:559–565

    CAS  Google Scholar 

  • Yang GH, Wang XL, Lin X, Cao M, Zhang XB, Yuan SC, Ke YC, Yang XF (2017) Analysis of the important agronomic traits in melon variety ‘Jinmi No 6’ F2 populations. China Cucurbits Vegetables 30(08):12–15

    Google Scholar 

  • Yang T, Zhang P, Pan J, Amanullah S, Luan F, Han W, Liu H, Wang X (2022) Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in watermelon. Int J Mol Sci 23:642

    Article  CAS  Google Scholar 

  • Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C (2021) Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. Theor Appl Genet 134:3263–3277

    Article  CAS  Google Scholar 

  • Zhai R, Wang Z, Yang C, Lin-Wang K, Espley R, Liu J, Li X, Wu Z, Li P, Guan Q, Ma F, Xu L (2019) PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit. Hortic Res 6:137

    Article  CAS  Google Scholar 

  • Zhang ZP, Zhang YN, Sun L, Qiu G, Sun YJ, Zhu ZC, Luan FS, Wang XZ (2018) Construction of a genetic map for, Citrullus lanatus, based on CAPS markers and mapping of three qualitative traits. Sci Hortic 233:532–538

    Article  CAS  Google Scholar 

  • Zhang T, Liu J, Amanullah S, Ding Z, Cui H, Luan F, Gao P (2021) Fine mapping of Cla015407 controlling plant height in watermelon. J Amer Soc Hort Sci 146:196–205

  • Zheng LS, Heupel RC, Dellapenna D (1992) The beta-subunit of tomato fruit polygalacturonase isoenzyme-1-isolation, characterization, and identification of unique structural features. Plant Cell 4:1147–1156

    CAS  Google Scholar 

  • Zhong Y, Zhou Y, Li J, Yu T, Wu T, Luo J, Luo S, Huang H (2017) A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Zhu HY, Song PY, Koo DH, Guo LQ, Li YM, Sun SR, Weng YQ, Yang LM (2016) Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genom 17(1):557

    Article  Google Scholar 

Download references

Acknowledgements

All authors are grateful to the researchers of Qiqihar Agricultural Technology Extension Center. This research work was financially supported by the National Natural Science Foundation of China (31972437; 31772334; 31401891), the Natural Science Foundation of Heilongjiang Province (LC2018015) to Meiling Gao, and the Fundamental Research Funds of Heilongjiang Provincial Universities (135509219) to Yu Guo.

Funding

This research work was financially supported by the National Natural Science Foundation of China (31972437; 31772334; 31401891), the Natural Science Foundation of Heilongjiang Province (LC2018015) to Meiling Gao, and the Fundamental Research Funds of Heilongjiang Provincial Universities (135509219) to Yu Guo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Gao.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 798 kb)

Supplementary file2 (XLSX 288 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Gao, M., Amanullah, S. et al. Molecular mapping of candidate gene regulating fruit stripe trait in watermelon. Euphytica 218, 174 (2022). https://doi.org/10.1007/s10681-022-03128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03128-3

Keywords

Navigation