Skip to main content
Log in

Elucidating the genetic male sterility in Cynara cardunculusL. through a BSA approach: identification of associated molecular markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cynara cardunculus L., member of the Asteraceae family, includes three botanical varieties, fully-inter-fertile: scolymus (globe artichoke), altilis (cultivated cardoon) and sylvestris (wild cardoon).The artichoke production is traditionally carried out through vegetative propagation using offshoots or suckers. However, several new seed propagated cultivars have been developed in recent years, which showed high yield and ruled out phytosanitary problems inherent to vegetative propagation. In this context, hybrid seeds production, which exploits the heterosis phenomenon producing high performance plants, is of global interest. Manual emasculation is extremely difficult; therefore, it is essential to have a male-sterility system to achieve an efficient hybrids production. In Cynara genus, genic male sterility was found only in globe artichoke but the genetic bases of this phenomenon is poorly explored. The objective of this work was to elucidate the genetic male sterility in Cynara cardunculus L. combining SRAP technology and a BSA approach and to identify molecular markers associated to ms genes, feasible to be applied for MAS in breeding programs of the species. Segregation of the male sterility in our F2 population fit to a monogenic segregation model (3:1), revealing that only one gene (ms) is responsible, in homozygous recessive stage, to determine male sterile plants. Three SRAP markers linked to the ms gene were found. The nearest marker (SRAP 7-10.1774) was estimated to be 0.5 cM from the ms gene whereas the others (SRAP 4-9.332 and SRAP 4-9.700) were linked at 4.3 cM and 13.9 cM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aneja B, Yadav NR, Chawla V, Yadav RC (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breed 30(4):1635–1648

    Article  CAS  Google Scholar 

  • Balzarini MG, Di Rienzo JA (2013) InfoGen versión 2012. FCA, Universidad Nacional de Córdoba, Argentina. http://www.info-gen.com.ar

  • Basnizki J, Zohary D (1994) Breeding of seed planted artichoke. Plant Breed Rev 12:253–269

    Google Scholar 

  • Bassam B, Caetano-Anollés G, Gresshoff G (1991) Fast and sensitive silver staining of DNA in polyacrilamide gels. Anal Biochem 196:80–83

    Article  CAS  Google Scholar 

  • Bermejo C, Gatti I, Caballero N, Cravero V, Martin E, Cointry E (2014) Study of diversity in a set of lentil RILs using morphological and molecular markers. Aust J Crop Sci 8(5):689

    CAS  Google Scholar 

  • Calabrese N, Cravero V, Pagnotta M (2019) Cynara cardunculus propagation. In the “the globe artichoke genome”. In: Portis E, Lanteri S (eds) Compendium plant genomes. Springer, Berlin. ISBN 978-3-030-20011-4

    Google Scholar 

  • Cravero V, Martín E, Cointry E (2007) Genetic diversity in Cynara cardunculus determined by sequence-related amplified polymorphism markers. J Am Soc Hortic Sci 132(2):208–212

    Article  CAS  Google Scholar 

  • García SM, Firpo IT, Cointry EL, López Anido FS, Cravero VP (2005) Artichoke situation in Argentina. Acta Hortic 681:195–200

    Article  Google Scholar 

  • Gong L, Li C, Capatana A, Feng J, Qi L, Seiler GJ, Jan CC (2014) Molecular mapping of three nuclear male sterility mutant genes in cultivated sunflower (Helianthus annuus L.). Mol Breed 34(1):159–166

    Article  CAS  Google Scholar 

  • Guindón MF, Martin E, Zayas A, Cointry E, Cravero V (2016) Evaluation of SRAP markers for mapping of Pisum sativum L. Crop Breed Appl Biotechnol 16(3):182–188

    Article  Google Scholar 

  • Hayashi M, Ujiie A, Serizawa H, Sassa H, Kakui H, Oda T, Koba T (2011) Development of SCAR and CAPS markers linked to a recessive male sterility gene in lettuce (Lactuca sativa L.). Euphytica 180(3):429–436

    Article  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Lanteri S, Saba E, Cadinu M, Malllica GM, Baghino L, Portis E (2004) Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theor Appl Genet 108:1534–1544

    Article  CAS  Google Scholar 

  • Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112(8):1532–1542

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Li G, Gao M, Yang B, Quiros CF (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107(1):168–180

    Article  CAS  Google Scholar 

  • Lo Bianco C, Saccardo F, Olimpieri I, Mazzucato A, Crinò P (2011) Floral biology in male sterile clones of globe artichoke [Cynara cardunculus subsp. scolymus (L.) Hegi]. In: VII International symposium on artichoke, cardoon and their wild relatives, vol 942. pp 159–164

  • López Anido F, Cravero VP, Martín EA, Cripa I, Cointry EL (2010) Differential expression of the genetic variance in F2 populations of reciprocal crosses of artichoke. Span J Agric Res 3:679–685

    Article  Google Scholar 

  • López Anido FS, Martin EA, García SM, Cointry EL (2016) Successful transferring of male sterility from globe artichoke into cultivated cardoon. In: IX international symposium on artichoke, cardoon and their wild relatives, vol 1147. pp. 163–166

  • Mackay IJ, Caligari PDS (2000) Efficiencies of F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci 40(3):626–630

    Article  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7(11):e1002255

    Article  CAS  Google Scholar 

  • Maneval WE (1936) Lacto-phenol preparations. Stain Technol 11(1):9–11

    Article  Google Scholar 

  • Martin E, Cravero V, Espósito MA, López A, Milanesi L, Cointry E (2008) Identification of markers linked to agronomic traits in globe artichoke. Aust J Crop Sci 1(2):43–46

    CAS  Google Scholar 

  • Martin E, Cravero V, Portis E, Scaglione D, Acquaviva E, Cointry E (2013) New genetic maps for globe artichoke and wild cardoon and their alignment with an SSR-based consensus map. Mol Breeding 32(1):177–187

    Article  CAS  Google Scholar 

  • Martin EA, Cravero VP, Anido FSL, Cointry EL (2016) QTLs detection and mapping for yield-related traits in globe artichoke. Sci Hortic 202:156–164

    Article  Google Scholar 

  • Mauromicale G, Ierna A, Lanteri S, Licandro P, Longo AMG, Santoiemma G, Morello N (2004) Panorama varietale del carciofo in Sicilia. L’Informatore Agrario 52:15–18

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832

    Article  CAS  Google Scholar 

  • Naresh P, Lin SW, Lin CY, Wang YW, Schafleitner R, Kilian A, Kumar S (2018) Molecular markers associated to two non-allelic genic male sterility genes in peppers (Capsicum annuum L.). Front Plant Sci 9:1343

    Article  Google Scholar 

  • Ochogavía AC, Novello MA, Bianchi MB, Picardi LA, Nestares GM (2018) Partial male sterility in imisun sunflower: imazapyr treatment in advanced vegetative stages decreases pollen yield and alters ahas gene expression. Crop Sci 58(5):1877–1889

    Article  Google Scholar 

  • Pagnotta MA, Rey NA, Mondini L, Aringoli R, Jordan R, Saccardo F (2016) Assessment of artichoke hybrids under USA and Italian conditions and the heritability of some important traits. Acta Hortic 1147:257–264. https://doi.org/10.17660/actahortic.2016.1147.36

    Article  Google Scholar 

  • Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S (2009) Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet 120(1):59–70

    Article  CAS  Google Scholar 

  • Principe JA (1984) Male-sterility in artichoke. HortScience, Alexandria

    Google Scholar 

  • Rey N, Jordan R, Saccardo F, Pagnotta MA (2016) A successful strategy to obtain artichoke hybrids. Acta Hortic 1147:357–368. https://doi.org/10.17660/ActaHortic.2016.1147.50

    Article  Google Scholar 

  • Saccardo F, Jordan R, Jordan A, Crinò P, Micozzi F, Lo BC, Temperini A, Rey N, Pagnotta MA (2013) Innovative strategy to obtain F1 Hybrids of Globe Artichoke. Acta Hort (ISHS) 983:159–179

    Article  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3(3):188–195

    Article  CAS  Google Scholar 

  • Song J, Li Z, Liu Z, Guo Y, Qiu LJ (2017) Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Front Plant Sci 8:919

    Article  Google Scholar 

  • Sonnante G, Gatto A, Morgese A, Montemurro F, Sarli G, Blanco E, Pignone D (2011) Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus. Theor Appl Genet 123(7):1215

    Article  Google Scholar 

  • Stamigna C, Micozzi F, Pandozy G, Crinò P, Saccardo F (2004) Produzione di ibridi F1 di carciofo mediante impiego di cloni maschiosterili. Italus Hortus 11(5):29–33

    Google Scholar 

  • Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PB, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114(8):1305–1317

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap (R) version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen. www.kyazma.nl/index.php/mc

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  Google Scholar 

  • Wang ZW, Xiang CP, Mei SY (2006) Cloning and characterization of a novel sulfate transporter gene from radish (Raphanus sativus L.) short communication. DNA Seq 17(3):237–241

    Article  CAS  Google Scholar 

  • Win KT, Vegas J, Zhang C, Song K, Lee S (2017) QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theor Appl Genet 130(1):199–211

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P (2011) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177(1):15–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Agencia Nacional de Investigaciones Científicas y Técnicas (ANCYT, Argentina) and Consejo Nacional de Investigaciones Científicas y Técnicas (PUE-0043, CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldana Zayas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayas, A., Martin, E., Bianchi, M. et al. Elucidating the genetic male sterility in Cynara cardunculusL. through a BSA approach: identification of associated molecular markers. Euphytica 216, 8 (2020). https://doi.org/10.1007/s10681-019-2531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2531-1

Navigation