Skip to main content
Log in

Assessment of biochemical methane potential of dairy wastewater with different co-substrates and evaluation of different kinetic models

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dairy industry wastewater can be considered as an important source of pollution due to its high amounts and pollutant concentrations. Anaerobic treatment is seen as a suitable alternative over aerobic treatment which requires huge aeration systems. Biochemical methane potential (BMP) testing is a widely applied technique for estimating the performance of anaerobic digesters and still has no clear alternative. In the study, the biochemical methane potential change was investigated by mixing dairy wastewater with different co-substrates (cattle manure, chicken manure and slaughterhouse wastewater) at different rates. The highest biogas potential per gram of chemical oxygen demand added (CODadded) was determined as 574 mLbiogas in a mixture of 74% dairy wastewater + 2% chicken manure + 24% slaughterhouse wastewater inoculated with granular sludge. The highest methane potential was determined as 340 mLCH4 in the same co-substrate mixture inoculated with anaerobic sludge. In recent years, mathematical modeling offers an alternative to BMP tests and many different models are used for this purpose. In the study, six different mathematical models were used to simulate the BMP results, and the highest correlation coefficient in almost all mixtures ranged from 0.900 to 0.997 with the Modified Gompertz equation and Fitzhugh models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References  

  • Adedeji, J. A., & Chetty, M. (2021). Kinetics Analysis for Anaerobic Co-digestion of Sewage Sludge and Industrial Wastewater. Chemical Engineering Transactions, 86, 283–288. https://doi.org/10.3303/CET2186048

    Article  Google Scholar 

  • Akansha, J., Nidheesh, P. V., Gopinath, A., Anupama, K. V., & Suresh Kumar, M. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 253, 126652. https://doi.org/10.1016/j.chemosphere.2020.126652

    Article  CAS  Google Scholar 

  • Ali, M. M., Ndongo, M., Yetilmezsoy, K., Bahramian, M., Bilal, B., Youm, I., & Goncaloglu, B. I. (2021). Appraisal of methane production and anaerobic fermentation kinetics of livestock manures using artifcial neural networks and sinusoidal growth functions. Journal of Material Cycles and Waste Management, 23, 301–314. https://doi.org/10.1007/s10163-020-01130-2

    Article  CAS  Google Scholar 

  • APHA (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

  • Argiz, L., Reyes, C., Belmonte, M., Franchi, O., Campo, R., Fra-Vázquez, A., Val del Rio, A., Mosquera-Corral, A., & Campos, J. L. (2020). Assessment of a fast method to predict the biochemical methane potential based on biodegradable COD obtained by fractionation respirometric tests. Journal of Environmental Management, 269, 110695. https://doi.org/10.1016/j.jenvman.2020.110695

    Article  CAS  Google Scholar 

  • Bella, K., & Rao, P. V. (2022). Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. Journal of Environmental Management, 308, 114581. https://doi.org/10.1016/j.jenvman.2022.114581

    Article  CAS  Google Scholar 

  • Bella, K., & Rao, P. V. (2023). Anaerobic digestion of dairy wastewater: Effect of different parameters and co-digestion options—a review. Biomass Conversion and Biorefinery, 13, 2527–2552. https://doi.org/10.1007/s13399-020-01247-2

    Article  CAS  Google Scholar 

  • Biswas, T., Bhushan, S., Prajapati, S. K., & Chaudhuri, S. R. (2021). An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. Journal of Environmental Management, 286, 112196. https://doi.org/10.1016/j.jenvman.2021.112196

    Article  CAS  Google Scholar 

  • Budiyono, I. S., & Sumardiono, S. (2014). Kinetic Model of Biogas Yield Production from Vinasse at Various Initial pH: Comparison between Modified Gompertz Model and First Order Kinetic Model. Research Journal of Applied Sciences, Engineering and Technology, 7(13), 2798–2805.

    Article  CAS  Google Scholar 

  • Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., & Adelard, L. (2019). Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. Procedia Manufacturing, 35, 259–264. https://doi.org/10.1016/j.promfg.2019.05.037

    Article  Google Scholar 

  • Chen, X., Tang, R., Wang, Y., Yuan, S., Wang, W., Ali, I. M., & Hu, Z.-H. (2021). Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater. Bioresource Technology, 320, 124356. https://doi.org/10.1016/j.biortech.2020.124356

    Article  CAS  Google Scholar 

  • Civelek Yoruklu, H., Korkmaz, E., Manav Demir, N., Ozkaya, B., & Demir, A. (2018). The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. Journal of Material Cycles and Waste Management, 20, 800–809. https://doi.org/10.1007/s10163-017-0641-1

    Article  CAS  Google Scholar 

  • Coelho, M. M. H., Morais, N. W. S., Pereira, E. L., Leitao, R. C., & dos Santos, A. B. (2020). Potential assessment and kinetic modeling of carboxylic acids production using dairy wastewater as substrate. Biochemical Engineering Journal, 156, 107502. https://doi.org/10.1016/j.bej.2020.107502

    Article  CAS  Google Scholar 

  • Cruz, I. A., Melo, L., Leite, A. N., Satiro, J. V. M., Andrade, L. R. S., Torres, N. H., Padilla, R. Y. C., Bharagava, R. N., Tavares, R. F., & Ferreira, L. F. R. (2019). A new approach using an open-source low cost system for monitoring and controlling biogas production from dairy wastewater. Journal of Cleaner Production, 241, 118284. https://doi.org/10.1016/j.jclepro.2019.118284

    Article  CAS  Google Scholar 

  • Donoso-Bravo, A., Ortega, V., Lesty, Y., Bossche, H. V., & Olivares, D. (2019). Addressing the synergy determination in anaerobic co-digestion and the inoculum activity impact on BMP test. Water Science & Technology, 80(2), 387–396. https://doi.org/10.2166/wst.2019.292

    Article  CAS  Google Scholar 

  • Elbeshbishy, E., Nakhla, G., & Hafez, H. (2012). Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresource Technology, 110, 18–25. https://doi.org/10.1016/j.biortech.2012.01.025

    Article  CAS  Google Scholar 

  • Elsayed, M., Diab, A., & Soliman, M. (2021). Methane production from anaerobic co-digestion of sludge with fruit and vegetable wastes: Effect of mixing ratio and inoculum type. Biomass Conversion and Biorefinery, 11, 989–998.

    Article  CAS  Google Scholar 

  • Fernandez-Rodriguez, M. J., Mancilla-Leyton, J. M., Lama-Calvente, D., & Borja, R. (2022). Evaluation of batch mesophilic anaerobic digestion of raw and trampled llama and dromedary dungs: Methane potential and kinetic study. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02255-6

    Article  Google Scholar 

  • Ferreira, T. F., Santos, P. A., Paula, A. V., de Castro, H. F., & Andrade, G. S. S. (2021). Biogas generation by hybrid treatment of dairy wastewater with lipolytic whole cell preparations and anaerobic sludge. Biochemical Engineering Journal, 169, 107965. https://doi.org/10.1016/j.bej.2021.107965

    Article  CAS  Google Scholar 

  • Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water, 11(5), 921. https://doi.org/10.3390/w11050921

    Article  CAS  Google Scholar 

  • Gogoi, M., Biswas, T., Biswal, P., Saha, T., Modak, A., Gantayet, L. M., Nath, R., Mukherjee, I., Thakur, A. R., Sudarshan, M., & Chaudhuri, S. R. (2021). A novel strategy for microbial conversion of dairy wastewater into biofertilizer. Journal of Cleaner Production, 293, 126051. https://doi.org/10.1016/j.jclepro.2021.126051

    Article  CAS  Google Scholar 

  • Gong, L., Yang, X., Wang, Z., Zhou, J., & You, X. (2019). Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Advances, 9, 19104–19113. https://doi.org/10.1039/C9RA01662G

    Article  CAS  Google Scholar 

  • Grosser, A. (2018). Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy, 143, 488–499. https://doi.org/10.1016/j.energy.2017.11.010

    Article  CAS  Google Scholar 

  • Habchi, S., Lahboubi, N., Karouach, F., Naim, I., Lahlou, Y., Bakraoui, M., Sallek, B., & Bari, H. E. (2022). Effect of thermal pretreatment on the kinetic parameters of anaerobic digestion from recycled pulp and paper sludge. Ecological Engineering & Environmental Technology, 23(1), 192–201.

    Article  Google Scholar 

  • Ji, S., Ma, W., Wei, Q., Zhang, W., Jiang, F., & Chen, J. (2020). Integrated ABR and UASB system for dairy wastewater treatment: Engineering design and practice. Science of the Total Environment, 749, 142267. https://doi.org/10.1016/j.scitotenv.2020.142267

    Article  CAS  Google Scholar 

  • Jijai, S., Srisuwan, G., Thong, S. O., Norli, I., & Siripatana, C. (2016). Effect of Substrate and Granules/Inocula Sizes on Biochemical Methane Potential and Methane Kinetics. Iranica Journal of Energy and Environment, 7(2), 94–101.

    CAS  Google Scholar 

  • Johannesson, G. H., Crolla, A., Lauzon, J. D., & Gilroyed, B. H. (2020). Estimation of biogas co-production potential from liquid dairy manure, dissolved air flotation waste (DAF) and dry poultry manure using biochemical methane potential (BMP) assay. Biocatalysis and Agricultural Biotechnology, 25, 101605. https://doi.org/10.1016/j.bcab.2020.101605

    Article  Google Scholar 

  • Karadag, D., Köroğlu, O. E., Ozkaya, B., & Cakmakci, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochemistry, 50(2), 262–271. https://doi.org/10.1016/j.procbio.2014.11.005

    Article  CAS  Google Scholar 

  • Ko, J. H., Townsend, T. G., & Kim, H. (2012). Evaluation of the potential methane yield of industrial wastewaters used in bioreactor landfills. Journal of Material Cycles and Waste Management, 14(3), 162–168. https://doi.org/10.1007/s10163-012-0053-1

    Article  CAS  Google Scholar 

  • Kothari, R., Kumar, V., Pathak, V. V., & Tyagi, V. V. (2017). Sequential hydrogen and methane production with simultaneous treatment of dairy industry wastewater: Bioenergy profit approach. International Journal of Hydrogen Energy, 42(8), 4870–4879. https://doi.org/10.1016/j.ijhydene.2016.11.163

    Article  CAS  Google Scholar 

  • Kurup, G. G., Adhikari, B., & Zisu, B. (2019). Treatment performance and recovery of organic components from high pH dairy wastewater using low-cost inorganic ferric chloride precipitant. Journal of Water Process Engineering, 32, 100908. https://doi.org/10.1016/j.jwpe.2019.100908

    Article  Google Scholar 

  • Lakra, R., Choudhury, S., & Basu, S. (2021). Recovery of protein and carbohydrate from dairy wastewater using ultrafiltration and forward osmosis processes. Materials Today: Proceedings, 47(7), 1400–1403. https://doi.org/10.1016/j.matpr.2021.02.702

    Article  CAS  Google Scholar 

  • Li, P., Li, W., Sun, M., Xu, X., Zhang, B., & Sun, Y. (2019). Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues. Energies, 12, 26. https://doi.org/10.3390/en12010026

    Article  CAS  Google Scholar 

  • Manav-Demir, N., Unal, E., Atci, E.B. (2019). “Determination of Biochemical Methane Potential (BMP) of Gum Industry Wastewater”, IV. ECOCEE Eurasian Conference on Civil and Environmental Engineering, 17–18 June 2019, İstanbul.

  • Manav-Demir, N., & Unal, E. (2022). Comparison of Performances of Kinetic Models for Biomethane Production with Cheese Whey. Water Air Soil Pollution, 233, 350. https://doi.org/10.1007/s11270-022-05817-0

    Article  CAS  Google Scholar 

  • Mardanpour, M. M., Esfahany, M. N., Behzad, T., & Sedaqatvand, R. (2012). Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosensors and Bioelectronics, 38(1), 264–269. https://doi.org/10.1016/j.bios.2012.05.046

    Article  CAS  Google Scholar 

  • Meneses-Quelal, W. O., Velazquez-Mart, B., Gaibor-Chavez, J., & Nino-Ruiz, Z. (2021). Biochemical potential of methane (BMP) of camelid waste and the Andean region agricultural crops. Renewable Energy, 168, 406–415. https://doi.org/10.1016/j.renene.2020.12.071

    Article  CAS  Google Scholar 

  • Miao, R., Ma, B., Li, P., Wang, L., & Li, X. (2021). Mitigation mechanism of ozonation in the casein fouling of ultrafiltration membranes: Possible application in dairy wastewater treatment. Journal of Membrane Science, 629, 119307. https://doi.org/10.1016/j.memsci.2021.119307

    Article  CAS  Google Scholar 

  • Morais, N. W. S., Coelho, M. M. H., Oliveira, M. G., Mourao, J. M. M., Pereira, E. L., & Santos, A. B. (2021). Kinetic study of methanization process through mathematical modeling in biochemical methane potential assays from four different inoculants. Water Air Soil Pollution, 232, 423. https://doi.org/10.1007/s11270-021-05387-7

    Article  CAS  Google Scholar 

  • Morais, N. W. S., Coelho, M. M. H., Silva, A. S., Silva, F. S. S., Ferreira, T. J. T., Pereira, E. L., & dos Santos, A. B. (2021). Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture. Environmental Pollution, 280, 116876. https://doi.org/10.1016/j.envpol.2021.116876

    Article  CAS  Google Scholar 

  • Oliveira, J. V., Costa, J. C., Cavaleiro, A. J., Pereira, M. A., & Alves, M. M. (2022). Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests. Energies, 15(13), 4696. https://doi.org/10.3390/en15134696

    Article  CAS  Google Scholar 

  • Oliwit, A. T., Cayetano, R. D. A., Kumar, G., Kim, G., Kim, J. S., & Kim, S.-H. (2020). Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment. Environmental Science and Pollution Research, 27, 17631–17641. https://doi.org/10.1007/s11356-019-07190-8

    Article  CAS  Google Scholar 

  • Parra-Orobio, B. A., Donoso-Bravo, A., & Torres-Lozada, P. (2022). Pre-dimensioning of small-scale anaerobic reactors of food waste through biochemical methane potential assays and kinetic models. BioEnergy Research, 15, 573–588. https://doi.org/10.1007/s12155-021-10291-3

    Article  CAS  Google Scholar 

  • Pellera, F.-M., & Gidarakos, E. (2016). Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. Journal of Environmental Chemical Engineering, 4, 3217–3229. https://doi.org/10.1016/j.jece.2016.05.026

    Article  CAS  Google Scholar 

  • Pererva, Y., Miller, C. D., & Sims, R. C. (2020). Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing. Their Selection and Numerical Solution. Water, 12(6), 1831. https://doi.org/10.3390/w12061831

    Article  CAS  Google Scholar 

  • Ruiz, L. M., Fernandez, M., Genaro, A., Martin-Pascual, J., & Zamorano, M. (2023). Multi-Parametric Analysis Based on Physico-Chemical Characterization and Biochemical Methane Potential Estimation for the Selection of Industrial Wastes as Co-Substrates in Anaerobic Digestion. Energies, 16(14), 5444. https://doi.org/10.3390/en16145444

    Article  CAS  Google Scholar 

  • Santos, A. D., Martins, R. C., Quinta-Ferreira, R. M., & Castro, L. M. (2020). Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Reports, 6(8), 340–344. https://doi.org/10.1016/j.egyr.2020.11.158

    Article  Google Scholar 

  • Seekao, N., Sangsri, S., Rakmak, N., Dechapanya, W., & Siripatana, C. (2021). Co-digestion of palm oil mill effluent with chicken manure and crude glycerol: Biochemical methane potential by monod kinetics. Heliyon, 7(2), e06204. https://doi.org/10.1016/j.heliyon.2021.e06204

    Article  CAS  Google Scholar 

  • Sillero, L., Solera, R., & Perez, M. (2022). Biochemical assays of potential methane to test biogas production from dark fermentation of sewage sludge and agricultural residues. International Journal of Hydrogen Energy, 47, 13289–13299. https://doi.org/10.1016/j.ijhydene.2022.02.080

    Article  CAS  Google Scholar 

  • Skripsts, E., Mezule, L., & Klaucans, E. (2022). Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers. Energies, 15(12), 4333. https://doi.org/10.3390/en15124333

    Article  CAS  Google Scholar 

  • Tan, L. C., Peschard, R., Deng, Z., Ferreira, A. L. M., Lens, P. N. L., & Pacheco-Ruiz, S. (2021). Anaerobic digestion of dairy wastewater by side-stream membrane reactors: Comparison of feeding regime and its impact on sludge filterability. Environmental Technology & Innovation, 22, 101482. https://doi.org/10.1016/j.eti.2021.101482

    Article  CAS  Google Scholar 

  • Wang, Y., & Serventi, L. (2019). Sustainability of dairy and soy processing: A review on wastewater recycling. Journal of Cleaner Production, 237, 117821. https://doi.org/10.1016/j.jclepro.2019.117821

    Article  CAS  Google Scholar 

  • Yoon, Y., Lee, S., Kim, K., Jeon, T., & Shin, S. (2018). Study of anaerobic co-digestion on wastewater treatment sludge and food waste leachate using BMP test. Journal of Material Cycles and Waste Management, 20, 283–292. https://doi.org/10.1007/s10163-017-0581-9

    Article  CAS  Google Scholar 

  • Zylka, R., Karolinczak, B., & Dabrowski, W. (2021). Structure and indicators of electric energy consumption in dairy wastewater treatment plant. Science of the Total Environment, 782, 146599. https://doi.org/10.1016/j.scitotenv.2021.146599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out in Yildiz Technical University Faculty of Civil Engineering Department of Environmental Engineering Laboratory.

Funding

Funding information is not applicable / No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Neslihan Manav-Demir and Elif Unal performed initial literature search; Elif Unal performed experimental procedures; Neslihan Manav-Demir performed numerical analyses; Neslihan Manav-Demir and Elif Unal wrote the manuscript. Neslihan Manav-Demir is the instructor and Elif Unal is the graduate student. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Neslihan Manav-Demir.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unal, E., Manav-Demir, N. Assessment of biochemical methane potential of dairy wastewater with different co-substrates and evaluation of different kinetic models. Environ Monit Assess 196, 21 (2024). https://doi.org/10.1007/s10661-023-12208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12208-3

Keywords

Navigation